In the history of psychology, first-person methods, such as introspection, have come into disrepute in favor of the experimental approach. Yet the results of first-person research – such as the famous studies provided by Maurice Merleau-Ponty in his *Phenomenology of Perception* – have indeed produced knowledge subsequently ascertained by neuroscientific research. The purpose of this book is to assist readers in developing first-person methods as a rigorous approach. It is designed to assist researchers in the field of education to develop their competencies in the first-person approach. Concrete examples, descriptions, precepts, and possible findings are provided to guide readers in their inquiries. Surrounding the inquiries, reflective commentaries assist readers to become reflexively aware of what they are doing and thereby come to bring into discourse the methods they have used. That is, readers are assisted in developing research praxis by experiencing first-person methods first hand and then to become reflexively aware of the method as method.
FIRST-PERSON METHODS
PRACTICE OF RESEARCH METHOD

Volume 3

Series Editor
Wolff-Michael Roth, University of Victoria, Canada

Scope
Research methods and research methodology are at the heart of the human endeavors that produce knowledge. Research methods and research methodology are central aspects of the distinction between folk knowledge and the disciplined way in which disciplinary forms of knowledge are produced. However, in the teaching of research methods and methodology, there traditionally has been an abyss between descriptions of how to do research, descriptions of research practices, and the actual lived research praxis.

The purpose of this series is to encourage the publication of books that take a very practical and pragmatic approach to research methods. For any action in research, there are potentially many different alternative ways of how to go about enacting it. Experienced practitioners bring to these decisions a sort of scientific feel for the game that allows them to do what they do all the while expressing expertise. To transmit such a feel for the game requires teaching methods that are more like those in high-level sports or the arts. Teaching occurs not through first principles and general precepts but by means of practical suggestions in actual cases. The teacher of method thereby looks more like a coach. This series aims at publishing contributions that teach methods much in the way a coach would tell an athlete what to do next. That is, the books in this series aim at praxis of method, that is, teaching the feel of the game of social science research.
First-Person Methods
Toward an Empirical Phenomenology of Experience

By

Wolff-Michael Roth

Griffith University, Mt. Gravatt, Queensland, Australia
Contents

Preface vii
Epigraph 1
1 Towards a Rigorous Praxis of First-Person Method 3
PART I: ON SENSING AND SENSE 9
2 On Vision and Seeing 15
3 On Tact and Touching 43
4 Hearing and Listening 61
5 Tasting and Smelling 75
PART II: MUNDANE EXPERIENCES 89
6 Memory 93
7 On Becoming Significant 109
8 On Being and Presence 123
9 Crises and Suffering as Sources of Learning 137
10 Thinking and Speaking 147
PART III: EKSTATIC KNOWING & LEARNING 159
11 Problem Solving 165
12 Work, Primary Experiences, and Accounts 191
13 Reading 209
| CONTENTS |
|-----------------|----------------|
| PART IV: FROM RESEARCH TO PUBLICATION | 239 |
| 14 Writing Your Research | 241 |
| Appendix | 249 |
| References | 251 |
| Index | 255 |
Preface

For many years, I have recorded the unfolding of critical problem-solving events in my life, paying particular attention to avoiding after-the-fact rationalizations while describing and explaining events as these were giving themselves to me. The purpose of these recordings has been to capture – to the extent that this is possible – the first-time-through nature of problem solving and, particularly, the perceptual processes involved. An important instant in my career, when I produced an extended database of first-hand experiences, was a three-month fellowship at the Hanse-Wissenschaftskolleg / Hanse Institute for Advanced Study (Delmenhorst, Germany) that allowed me to record my own perceptual processes during ‘experiments’ and during the data analysis of tapes recorded in a tenth-grade physics classroom. As I analyzed the physics tapes, it became evident to me that students faced some fundamental questions, ‘What is it that I am supposed to see?’ and ‘Do I see what I am supposed to see?’ To better understand the students’ experiences of learning about static electricity while producing unfamiliar events, I conducted several ‘experiments’ to reproduce the effect of perceiving something for the first time (i.e., something unfamiliar). Many of the experiences I recorded relate to events while riding my bicycle to and from the university, a 25-km trip, or during trips in the surrounding environment. I also designed an experiment, where I would take the same 25-km trip every day for 20 days, recording what I remembered and learned. During and after each daily bicycle trip into the countryside surrounding the Institute, I recorded perceptions, salient entities, and striking realizations that appeared into my mind, that is, anything that appeared to pertain to perceptual phenomena. At some point during this stay I realized that much of the research that I conduct from a third-person perspective – as a researcher interested in the learning of mathematics and science – was not possible without my intimate understanding of cognition that I developed through analyses based on a first-person perspective. Most recently, I used this approach to expose the centrality of passibility to human experience and knowledge and, in the course, exhibit the limits of the constructivist metaphor so prevalent in the study of learning. These limits can be seen precisely in those aspects of our lives where we clearly do not engage in
'construction' and 'interpretation' (Roth 2011). These analyses allowed me to show where constructivism is consistent with metaphysics, that is, with a philosophy that splits the human experience into two, one associated with the visceral body, the other with the mind.

In the history of psychology, first-person methods, such as introspection, have come into disrepute in favor of the experimental approach. Yet Francisco Varela, a well-known scholar writing on embodiment and ethics, was a neuroscientist who practiced first-person methods to generate data that the experimental methods had to be able to account of to be recognized as valid. Jean-Luc Nancy, one of the most eminent French philosophers of the 20th and early 21st centuries, also practices first-person methods. In fact, both produced gripping accounts of learning about the human existence that arose from the analyses of the organ transplantations they underwent, the latter of a heart, the former of a liver (Nancy 2000; Varela 2001). Both came to understand, while reflecting on this other organ, the ultimate otherness of the self as fundamental condition of human experience even without or prior to any organ transplant. This understanding of the inherently self-other nature of everything we know to be human runs counter to constructivist ideas, where, because the individual constructs its own mental structure, the mind could only find itself and therefore its self-identity.

First-person methods are interesting in the light of the fact that a little over a decade ago, the researchers who discovered the mirror neurons and their functions suggested in a *Science* publication (Rizzolatti et al. 1997) that the phenomenological philosopher Maurice Merleau-Ponty had correctly described, in the 1940s, the way the brain functions simply based on his first-person analysis of how humans perceive – for example, a cube as a series of two-dimensional perspectives that reveal themselves when the object that we know as a cube is rotated. Rather than having a representation of a cube somewhere in the mind – six square sides, eight corners, 12 edges, all 90° angles, and so on – we know a cube through its feel, its changing aspects when rotated, which always reveals something while hiding other things about the object denoted by the word ‘cube’. That is, in the cognitive neurosciences, there is acknowledgement of the value of having rigorous first-person accounts and explanations of experiences that can even serve as test beds for the most rigorous of sciences.

I started my research career as a physicist and then began to study cognition from a Piagetian and neo-Piagetian (short-term memory and information processing) point of view. But I have also been a teacher. What bugged me about all the research on cognition and cognitive development was that it never described the person’s view: Descriptions of teaching had very little to do with the way in which I experienced teaching and descriptions of learning had very little to do with the way in which I experience learning. Yet in our lives, we do not do what we do because some outside force or intrinsic factor determines us: We do what we do because of reasons that we can explain to others. I organize my life according to

1 The object actually is not a cube, as mathematicians understand it, because no real (material) object has precisely those properties that a geometer’s ‘cube’ as. Historically, the idealization emerged from continual refinements of real objects until, at some point in Greek history, the idealizations arose as projected limit objects (Husserl 1939).
those things that are available to me in and to my consciousness. Yet much research on learning does not deal in consciousness: Theories, such as individual and social constructivism, are about the rational construction of mental structures rather than about consciousness. Because we can explain what we do to others, what I think and do inherently can be shared. Any action is not singularly mine but descriptively available to others. Thus, my research interests have included returning reason to the person, especially in the case where research attributed non-reason or misconceptions to him/her. For me, it therefore has become a challenge to study how the world really looks to different people and what we can learn from it about the underlying dimensions that allow them to have the different experiences that they have. For a scientist, asking different people about their experiences – as does phenomenography – constitutes a confounding of experience and the history of the people. What I want is to generate different forms of living and lived experience while everything else remains the same. Some time in my career as a researcher, I began to realize that I could do such research: when I did it from a first-person perspective. If I was to consciously bring about variations in the experiences of a particular situation, I could study the conditions under which I would have one versus another experience. Then I would find out more about what makes me have this or that experience. That is, I began to be very little interested in merely sampling descriptions of experiences. The analyses of such descriptions, precisely because they are descriptions, tell us more about language and less about the person in flesh and blood to whom something happens and who renders these happenings in some form of account.

For nearly two decades, I have used first-person methods as an integral part of my research. Even though not all of this work was directly reported in journals – many of which are very conservative and aligned with traditional psychology and its perspective on method – it has helped me in developing understandings that informed and supported my third-person methods that I tend to report. The purpose of this book is to assist readers in developing first-person methods as rigorous means that go far beyond what we can find in the (science, mathematics) educational literature under the name of ‘phenomenology’, which frequently is little more than a name for doing ‘woe-me’ studies. In this book, I articulate clear distinctions between investigating, for example, discourse about emotion and investigating emotions themselves.

This book is designed to assist researchers in the field of education to develop their competencies in first-person methods. I provide concrete examples, which the readers are invited to do on their own, and provide descriptions, precepts, and possible findings that guide them in their inquiries. Over the course of my career, I have developed many such examples, which are suited for the present purposes because they can easily be conducted without equipment (e.g., the stereoscopic glasses that some experiences require). Surrounding the inquiries, I provide commentaries, which assist readers to become reflexively aware of what they are doing and thereby come to bring into discourse the methods they have used. That is, I assist readers to experience methods first hand and then to become reflexively aware of the method as method.

I sometimes draw on French and German texts. In this case, all translations are mine; where available to me, I have checked my translation against the copyrighted
one that has been published in English. Throughout this book, I also draw on definitions; I consistently use the Oxford English Dictionary (2011) for this purpose. I also draw on the etymology of terms, for which I use the Oxford English Dictionary, Le Grand Robert de la langue française (Rey 2011), and the Proto-Indo-European Etymological Dictionary (DHNGU 2007).

Brisbane, Queensland
January 2012
We think we know perfectly well what ‘seeing’, ‘hearing’, ‘sensing’ are, because perception has for a long time provided us with colored or sonorous objects. When we try to analyze it, we transpose these objects into consciousness. We commit what psychologists call ‘the experience error’ [English in original], which means that we immediately suppose in our consciousness things that we know are in the things. We make perception out of the perceived. And since the perceived is obviously accessible only through perception, we end up understanding neither one nor the other. We are caught up in the world and we do not succeed in extricating ourselves from it to move to the consciousness of the world. (Merleau-Ponty 1945: 11, emphasis added)

We believed we knew what feeling, seeing, hearing are, and now these words raise problems. We are invited to go back to the very experiences that they signify to define them anew. (Ibid: 17)
Towards a Rigorous Praxis of First-Person Method

The subjective is intrinsically open to intersubjective validation, if only we avail ourselves of a method and procedure for doing so. (Varela and Shear 1999: 2)

We investigate conscious activity in so far as it perceives itself unfolding in an operative and immanent mode, at once habitual and pre-reflective. (Depraz et al. 2002: 1)

We are not determined by our contexts but rather make decisions based on reasons that are grounded in the way in which the world appears to us at any one moment. Whereas learning environment research tends to suggest that this or that aspect of the learning environment determines us, close analysis of interviews immediately provides us with evidence to the contrary. For example, in interviews with scientists we may find out that a particular individual became a marine biologist using as an explanation that her aunt had frequently taken her to the beach, where the biologist developed a liking for anything related to the ocean. In this case, the decision to become a scientist is grounded in the positive aspect that the social environment provided. But the converse is also the case: someone becomes a scientist even though the environment is adverse. Thus, in one of my studies, the scientist suggested that his parents wanted him to become a doctor, doing what they could to convince him. But he wanted to become a water scientist. In a biographical interview, he tells me how, despite and against his parents’ wishes, he did become a scientist in his chosen field. Moreover, most of the researchers I know who do learning environment research and who use causal or correlational models to show the associations between learning environment and achievement measures do not understand themselves as determined by the social environment. That is, there is a considerable difference between theories such researchers use for modeling the learning of their participants and the theories they use to model their own learning.

My own take on the question of learning theories is that they need to be reflexive, describing our own learning as much as they are intended to describe the learning of people generally and students of all ages specifically. In this book I am interested in is the description of first-person methods that are employed to inquire
about knowing and learning by investigating our experiences, that is, in knowing and learning ‘right here at home’. But the kind of first-person method I am striving for is not contended with the reification of everyday, frequently mythical descriptions, but rather investigates phenomena critically in such a manner that more general conditions of knowing and learning are exhibited. This will show that the senses, movements, and our bodies are foundational to the sense we make of the ‘ten thousand’ things in and of the world and ourselves. Sense is not a something that can be understood through the development of metaphysical concepts but precisely by investigating how the senses of the body constitute the body of sense. It is not that we ‘make sense’ or ‘construct meaning’ as if it were something we do with minds disconnected from everything else, but rather, it is through sensory movements that become independent of the specific situation that object permanence and thought come about. And it is precisely through active movements that the senses of the body are affected (note the passive construction) and learn about the world. This relationship between movement, activity, and being affected, though already recognized by the ancient Greek – ‘Let us the first proceed on the assumption that to be acted upon or moves is identical with active operation’ (Aristotle 1907: 417a) – has been lost to modern learning theories. The latter theories solely focus on the agential aspect of human experience, completely neglecting both activity (as in activity theory) and the passive and pathic aspects of life. In fact, Aristotle uses the term páskhein (πάσχειν), the present active infinitive of the verb páskho (πάσχω), to suffer, undergo. This relationship of agency and passivity, though a central idea in recent philosophical developments, remains to be explored in the educational research literature. Such an exploration occurs, among other things, throughout this book. In fact, Aristotle recommends using the term ‘suffering’ (‘impression’) not in a single sense but as both changing and not changing the individual undergoing the experience. It is a dialectical framing, whereby learning derives from active and passive syntheses (Husserl 2001).

Studying learning from and through a first-person approach requires two steps: bracketing of experience – also referred to as phenomenological reduction or époché – and expression and validation. In the following, I focus on époché, the cornerstone of the phenomenological method, because expression and validation are little different from those in other sciences. Époché (from Gr. ἐποχή [epoché], suspension of judgment) is a systematic method for suspending judgment, a process of stepping outside of our usual, mundane, and preconceived notions about how the world works to gain greater insights and better understandings. There are three stages to époché: (a) an initial phase, during which experiences are systematically produced all the while suspending one’s beliefs about them, (b) a conversion phase during which attention is changed from the content of experience to the process of experience, and (c) a phase of accepting experience (no-attention). The first stage requires an unprejudiced openness to the details of experience, whereas the second stage requires analysis of the processes that make experience possible in the first place. The third stage constitutes a systematic approach to a phenomenon that many scientists have experienced: after wrestling long and hard with difficult prob-

1 This passage has also been translated in this manner: ‘Let us the in the first place agree to regard in our discussion the words “passive impression”, “movement”, and “activity” as identical’.
lems, the solutions come to them while engaging in very different activities (sleeping, exercising).

Inherently, as the name suggests, first-person methods require the experiences of the researcher. But the point is to make the first-person approach a rigorous method, which means, that it and its results can be and are shared by others. The point is to study, from the perspective of conscious activity, the activity of consciousness itself. The range of relevant phenomena is vast including ‘not only all the ordinary dimensions of human life (perception, motion, memory, imagination, speech, everyday social interactions), as well as cognitive events that can be precisely defined as tasks in laboratory experiments (for example, a protocol for visual attention), but also manifestations of mental life more fraught with meaning (dreaming, intense emotions, social tensions, altered states of consciousness)’ (Depraz et al. 2002: 2). In this book, I exemplify the praxis of first-person method by investigating a range of the phenomena that the authors of the quotation list. The first-person approach is required because the phenomena to be studied remain in a condition of immanence: they exist pre-reflectively. The point of the first-person methods is to study consciousness before reflection is setting in, and is perceptually and discursively articulated by what is at hand. The purpose of the approach is to study consciousness and conscious experience at the point of their emergence. It is only through a first-person approach that we can seek out among all the ‘acts of consciousness which remain in a condition of immanence’ ‘a form of pre-reflexivity on the basis of which consciousness is able to perceive its very self at work’ and which generally goes ‘unperceived’ (ibid: 2).

The term ‘first-person method’ does not merely mean, therefore, using the first-person accounts of one person or several persons, whom the researcher interviews. In the latter case, the account of experience is all that the researcher has access to, which, inherently, is constrained by the language available to the interlocutors – plus some other forms of expressions used in communication such as gestures, prosody, or body movements. In such a method, all we have available is text, and there is nothing that will allow us to get out of text. This is quite evident from a now almost infamous text on texts: ‘Yet if reading must not be content with doubling the text it cannot legitimately transgress the text toward something other than it, toward a referent (a reality that is metaphysical, historical, psychobiographical, etc.) or toward a signified outside the text whose content could take place, could have taken place outside of language, that is to say, in the sense that we give here to that word, outside of writing in general. That is why the methodological considerations that we risk applying here to an example are closely dependent on general propositions that we have elaborated above; as regards the absence of the referent or the transcendental signified. There is no outside-text [there is nothing outside of the text]’ (Derrida 1967c: 227). Text only leads to a doubling of the text, layers texts upon texts; the interpretation of text can only take us back to more text, enfolding text upon itself – to leave nothing but the text outside of which there is nothing left. It is a world of its own: making reference only to itself. What Derrida

\[\text{\footnotesize2}\]

2 The experience of texts layering themselves upon texts is actually a very common experience. Thus, in one of my research projects, a teacher asks a student during mathematics class, ‘what did we say that group was about’ while pointing to a group of cubes; and the student responds, after a period of silence, ‘what do you mean like’. The teacher utters in turn, ‘What was the . . . what did we put for the name of
CHAPTER 1

points out is that anything that appears as thing, anything that is articulated as differing from other things in nature, is jointed to (verbal) articulation. Anything that appears as some thing already has this characteristic of a text: it is a means of making present again some other presence. From the very fact that we make use of a representation – word, gesture, or diagram – we can conclude that the thing for which the representation stands is absent. For reasons that I show in chapter 8, as one instance of realizing first-person methods, ‘the absolute presence, Nature, that which words like “real mother” etc. name, have always already escaped, have never existed; that what opens sense and language is this writing as the disappearance of natural presence’ (ibid: 228).

When I use the term ‘experience’, I am writing about more than can be put into words – because much of our lives extends far beyond what we do or even can describe in words. When I say, ‘My hand hurts’, then nothing at all is communicated about the current carnal state in which I am, nothing about the intensity, nothing about the more or less extended limitations that this pain places on my action. Before I can say that I am in pain I experience pain at a pre-reflexive level, which I can do without having to conceptualize this experience. This conceptualization, consciousness always already is too late to capture the onset of what is happening to me before I become conscious of experiencing pain. Thus, when using the term ‘experience’, I ‘mean the lived, first-hand acquaintance with, and account of, the entire span of our minds and actions, with the emphasis not on the context of the action but on the immediate and embodied, and thus inextricably personal, nature of the content of action. Experience is always that which a singular subject is subjected to at any given time and place, that to which s/he has access “in the first person”’ (Depraz et al. 2002: 2). The interest of this kind of research is not only in that which a singular subject is subjected to but, more precisely, in the singular dimensions of the experience that only the first-person perspective can reveal. Thus, we may speak of ‘lived experience’ in the first-person perspective only when the lived ‘correspond[s] to an authentic and intimate contact of the subject with its own experience’ (Depraz 2009: 4). It is intended to understand the dimensions of experience that are more archaic, more carnal than what language can articulate. It is that which I feel rather than that which I can describe as feeling. What the first-person researcher aims at is producing and drawing on the pathic aspect of experience that have not yet been interpreted by language; these are experiences in the way they appear at the pre-noetic level, that is, the form of experience that precedes intellectual activity, intellectual intuition, knowledge, and cognitive engagement.

First-person methods have a lot of potential for identifying the ‘commonalities and isomorphisms between the practices found in different domains for different reasons’ (Depraz et al. 2002: 3). In fact, there is a ‘need for first-person data in the cognitive neurosciences, the need for reduction as a concrete and embodied praxis in phenomenology, the need for introspection in cognitive psychology, the need

the group?’ In this instance, she uses a different way of saying the same, being instigated to do so by the student’s question what she has meant. Only another, different way of saying the same can be done, which therefore merely shifts the signifier without attaining some ‘meaning’. The student could ask ‘what do you mean?’ repeatedly, and all that we would observe is the production of further sentences on the part of the teacher – until the ‘game’ eventually would be ended.
RIGOROUS PRAXIS OF FIRST-PERSON METHOD

various know-how in a wide range of psychotherapies, and the needs of various spiritual practices which highlight the “examination of consciousness” and the “practice of effortless effort” (ibid: 3). First-person methods concerned with the description of the ‘authentic and intimate contact of the subject with its own experience’ may be of interest to neuroscientists attempting to correlate brain imaging techniques with the experience of the person, to philosophers accessing primary experiences rather than texts, to psychologists and educators concerned with understanding the subjective contents of mind in the course of learning, to therapists and educators interested in assisting others in dealing with their ailments or in arriving at sound decision making about their lives, and to any one interested in spiritual experiences.

The kinds of approaches I exhibit in this book are aimed at bridging the dichotomous framing of the inevitable dialectical tension of the ideal and the material dimensions of human existence. Those who are firmly grounded in the ideal and idealism – e.g., in constructivist approaches characteristic of I. Kant, J. Piaget, or more recent, radical and social realizations thereof; and ill-conceived and misconceived forms of ‘post-modernism’ or ‘post-structuralism’ – will claim that there is nothing we can add to experience that lies outside of text (constructions), that is, that all experience is always already framed by the particular discourses (ideologies) that we have available. The other extreme formulation would be that it is possible to have experiences that are raw, pure, and inexpressible. The first-person method explicitly acknowledges – in its approach that brings into contact the ideal (discursive, ideological) and the material (embodied, carnal) dimensions of life – a productive tension. Accordingly, anything we can articulate is a manifestation of life, which itself remains inaccessible (Marion 2010). Just as light in itself is inaccessible to physicists but manifests (reveals) itself as wave or as particle, we may study forms of experience that emerge from life itself even though this life in itself is ineffable (e.g., Henry 2000). Just as physicists have found ways of ‘talking about’ light that allow them to anticipate how light will manifest itself and under which conditions it will manifest itself in one or another way, those using first-person methods are concerned with finding descriptions that allow them to anticipate how life (consciousness) will manifest itself under given conditions. The point is not to find out how life or cognition really is but to arrive at descriptions of the processes that bring the phenomena of interest about. That is, there is an interest in the process of phenomenization, that is, the process by means of which we experience this or that phenomenon. These descriptions are more general than the specific manifestations, because they allow us to anticipate what will be experienced; this exceeds research efforts that merely constitute catalogues of the experiences observed.

3 The Schrödinger formalism or Heisenberg matrix mechanics approach provide mathematical descriptions that predict the outcome of experiments (manifestations). Thus, for example, a light ray that falls through a narrow aperture will give rise to interference patterns, a wave phenomenon, but the interference patterns (in the old days) are recorded by means of photographic plates the blackening of which requires understanding light as a particulate phenomenon. Similarly, light entering a camera is bent in the lenses, a wave phenomenon, but the operation of the light meter inside the camera is a particulate phenomenon.
In the remainder of this book, I exemplify and comment on a praxis of first-person methods with respect to (a) sensing and sense, including vision and seeing, tact and touching, hearing and listening, and tasting and smelling (Part I); (b) mundane experiences, including memory, the process by means of which something becomes significant, crises and suffering as sources of learning, and the relation of thinking and speaking as interdependent processes (Part II); and (c) specific phenomena of ekstatic (i.e., consciously salient) knowing and learning, including problem solving, the relationship of work, primary experience and accounts, and reading (Part III). I conclude with some commentaries on publishing the results of research using first-person methods (Part IV).
I

ON SENSING AND SENSE
Sensation consists in being moved and acted upon, for it is held to be a species of qualitative change. (Aristotle 1907: 416b)

Whereas sense perception is theorized in our culture in terms of action words, Aristotle already notes the passive dimensions that come with learning about the world through the senses. He characterizes it as a process in which the perceiver is moved and impressed. We can hear this latter adjective in a double way, both as a physical process, whereby the person is qualitatively changed – especially salient when light is too strong, a sound is too light, an odor too strong – and when the person is affectively changed. In this context it is further noteworthy that an interesting coincidence – one researchers seldom point out and highlight – is that between the term we use to denote our interaction with the world, sense and the senses, and what we make of it: sense. That is, most researchers do not attend to the fact that without the living body that can be impressed, there would be no mind, no world in the way we tend to speak of, no interpretation, and no thought. At the very end of his life, Freud uttered his suspicion that the psyche is not something ephemeral, not something in the mind, not the untouchable soul, but something (physically) extended. Psyche is extended, he says, but it does not know it. ‘Psyche is body, and that is precisely what escapes it’ (Nancy 2006: 22). Even more interestingly, it is precisely this breakaway, this escapement that constitutes the psyche. ‘The “unconscious” is the extendedness of Psyche, and that, which

1 Translation: ‘Spatiality may be the projection of the extension of the psychic apparatus. No other derivation possible. Instead of Kant’s a priori conditions of our psychic apparatus. Psyche is spread out, does not know thereof’.

2 Descartes calls material things ‘res extensa’, extended things, and contrasts them with ‘res cogitans’, thinking things.
after Lacan nobody calls *subject*, is the singularity of a local coloring or of carnation* (ibid: 22). The philosopher concludes from such considerations this: ‘The body is the archi-tectonic of sense’ (ibid: 25, underline added). In other words, the *body* of sense is the sense of the *body*. This is to say that it is not that mind finds itself a body, as it may appear from the discourses on the ‘embodied mind’, or that mind and the sense it makes somehow get into the body. Rather, it is precisely the senses of the primary, self-affecting pre-reflective body that constitute the body of sense. Without the material senses, there would be no ideality that we call sense. Sense is irretrievably connected with and indissociable from our living (primary) bodies with senses.

Materiality takes us to bodies and the body, their weight and weightiness, and ultimately to the sense of touch, tact, and, therefore, to contact, contiguity, contingency, and contamination. The body, corpus, is of tactile nature leading us to a ‘Tactile corpus: skimming, grazing, pressing, pushing in, squeezing, smoothing, scratching, rubbing, stroking, palpating, groping, kneading, massaging, embracing, hugging, striking, pinching, biting, sucking, wetting, holding, letting go, licking, jerking, looking, listening, smelling, tasting, avoiding, kissing, cradling, swinging, carrying, weighing . . .’ (Nancy 2006: 82). Even those senses that are not immediately associated with the senses of touch, hearing, smelling, and tasting, are listed here together with those other experiences that directly arise from contact and tact.

When we talk and write about *lived* experience and take recourse to descriptions that people provide of certain situations, then we already draw on a system of expression that is decidedly ideal and ideological. When we study descriptions, we do not investigate how the senses constitute what we become aware of and then describe them in this or that manner but we precisely investigate the structure of the possibilities that a language provides for accounting of experience. When we ask the students in a physics lecture what they see in a teacher demonstration and some answer ‘I see motion’ and others say ‘I’ve seen nothing move’ then we yield descriptions. We can analyze such sentences as much as we want: all we find out are properties and possibilities that come with the English language – or the properties of the language in which the discussion was held. We may say that the students differently ‘interpreted’ the focal display. But this does not take us further, as I do not ‘interpret’ what I see when I look out of my office window, the plum tree and the roof of the chicken coop – I just see a plum tree and a chicken coop roof. That is, what such research does not give us are the underlying conditions that lead to this or that pre-noetic perception *given to me* in the first place, that is, before I begin to reflect and realize that what I have become aware of is a plum tree or the roof of a chicken coop.

To get us out of the quagmire, we may have to by-pass language and access the senses of the body, which, following Nancy, *constitute* the body of sense rather than the other way around. Much of the effort in 20th-century philosophy has been devoted, actually, to the problematic of the relation between experiences and accounts thereof. Thus, Edmund Husserl showed that the intentional consciousness

3 The body here needs to be understood as the original body rather than as the transcendental body, that is, our body in the way in which we are aware of it. A third kind of body is the material one, the one Descartes calls ‘res extensa’ and that we theorize in and using the sciences.
of sound is tied to retention and to the capacity to make it present again, represent it. Martin Heidegger subsequently showed in a number of analyses of early, pre-Socratic Greek thought the emergence of an approach that takes the representations (das Seiende) for the real thing that has given rise to them: Being (das Sein). We actually do know of experiences where language does not intervene, when we are completely absorbed in something or in experiences that nowadays are denoted by the expressions of ‘being in the flow’, ‘being in the groove’. In these instances, we do not make this presence present (again), that is, we do not represent it, which is accompanied by some striking consequences. For example, we lose any notion of time: precisely because we do not represent it or the situation. In chapter 8, I elaborate on methods for investigating such phenomena.

The methods and results of psychological and phenomenological research on perception described are quite different. Many current psychological models take an intermediate level between neuroscientific and phenomenological inquiry. However, there are suggestions (including those by philosophers, physicists, and mathematicians) that such an intermediate level for explaining perception is not necessary. A fruitful approach lies in bridging directly between neuroscientific and phenomenological studies of human experience. Conducting research through a first-person perspective constitutes a useful way of investigating phenomena in their own right but becomes especially powerful as an objective constraint on the models that third-person approaches develop. Thus, if a third-person approach is inadequate for describing what I experience, it has to be changed. First-person methods therefore provide constraints on what are suitable and useful third-person descriptions.

In the four chapters that constitute this Part I, I focus on how we might investigate sense experiences – seeing, touching, tasting, smelling, and hearing – and what we get from such investigations. The variation of sense experiences is easy to set up through particular experimental conditions. Throughout these chapters, I invite my readers to engage in the experiments as an integral part of their reading. It is in the doing of the experiments that the sense of the writing becomes possible: It is an experimental way of allowing sense to emerge from the senses of the body. This experimental method is much more difficult and perhaps prohibitive when we get to such phenomena as (identity) crises or (physical, emotional) suffering. Even everyday phenomena, such as forgetting or falling asleep, may be more difficult to set up precisely because intending these keeps them from occurring. The harder I might try to fall asleep by thinking about it, the less I am able to fall asleep; the harder I try to forget something, the longer it stays actively with me. It is the trying, my focusing on falling asleep or forgetting as an object of consciousness, that keeps this object present in my consciousness.

Some readers might ask why we might be interested in investigating basic experiences, such as the visual perception of basic shapes, basic three-dimensional figures, simple objects or the processes by means of which we learn through touch, hearing, taste, or smell. For me, it has become quite evident that I needed to better understand these basic processes, for example, when I attempted to understand what perception is like when (a) second-grade children begin to learn about the geometry of three-dimensional objects, (b) even professors near retirement do not see first-year university graphs in the way that is required for providing the correct
answers, (c) someone attempts to prove that the interior angles of a triangle on a Euclidean plane add up to 180°, or (d) we try to understand why touch may be a better paradigm for understanding cognition than visual perception. When I wrestled with these issues, I drew on first-person inquiries to be able to hold in check any preconceived common or scientific sense that we might have developed with respect to the phenomenon. The first-person method allows me to break with the normal perception and enact a process of radical doubt, which led me to a deeper and more selective understanding than what the literature appears to be telling me.

There is another central finding about knowing and learning that comes from an exploration of the senses: whereas ‘to construct [knowledge, meaning, sense]’ is a transitive verb, the verbs associated with the senses also have intransitive and passive uses that the verb ‘to construct’ excludes. First, verbs such as ‘to smell’ exist in transitive (e.g., ‘I smell a rose’) and intransitive form (e.g., ‘it smells’), which points us to the deliberative and non-deliberative acts of olfactory experience; and being affected by smell may occur both when we actively seek to smell something and when we are subjected to some smell (e.g., the odors of other people, a pulp mill). Moreover, the formulation ‘it smells’ points to the object as the origin of our sensation rather than to the mind that somehow ‘constructs’ the smell. Second, whereas others may construct me as a ‘science nerd’, involving the actions of others, the investigation of the senses shows that I am affected by my own actions, that is, that there are phenomena I undergo and am subject and subjected to. This is especially apparent in those situations where we attempt to sense something without sufficient caution: we burn or cut our fingers while touching something, we burn the inside of our nostrils when getting too close to a chemical, or we burn our taste buds when trying to taste something we are currently cooking. These basic sense experiences are foundational to learning and knowing. The investigation of the senses, therefore, also puts into relief – and seriously questions – the reigning epistemological paradigm not only in education but also in much of the social sciences: constructivism. However, such recent phenomena as aromatherapy should alert us to the fact that there are emotional and cognitive effects brought about by experiences based on very different sensory modalities, which work precisely because they by-pass cognitive, deliberate interpretation. Thus, one study that I found in the Web of Science reports that dart throwers improved performance (accuracy and consistency) after being exposed to peppermint scents as compared to a control condition and lavender scent. However, both peppermint and lavender scents significantly decreased anxiety levels. Other studies on aromatherapy for people with learning disabilities showed increased capacities to concentrate on cognitive tasks. For a good understanding of cognition, therefore, we have to ask questions including ‘Why might there be a connection between smell and cognition?’ and ‘How might this connection operate?’
On Vision and Seeing

Neuroscientists describe vision in terms of the processes that unfold when light falls onto the retina. Between the retina and the visual cortex, there are many transformations that the original (retinal) stimulus undergoes. In humans (as in all mammalian species), there are the photoreceptors in the retina, ganglion cells, ganglion cell axons (optic nerve), and synaptic transitions. At higher levels following the optical tract, neural activation is set in motion by the original stimulus that passes through the superior colliculus, lateral geniculate nucleus, and optic radiations before reaching the visual cortex. However, vision does not only involve activation that travels from the retina to the visual cortex (‘afferent’ movement); rather, activation also travels in the opposite way (‘efferent’ movement) so that higher-level processes directly affect the photoreceptors.

Everyday understanding of visual perception and its psychological equivalent take the visual cortex to be something like a panoramic internal screen from which the conscious (Cartesian) ‘I’ extracts or constructs the patterns of a given world. That is, the visual cortex is taken as the ‘mirror of nature’ that underlies some epistemologies. Such a view is implemented in almost all current cognitive models of learning from visual contact with the world. For example, the cells in the visual areas are treated as feature detectors that extract from a visual array (‘raw primal sketch’) propositions like ‘there is an edge with coordinates (112,39), orientation 128°, contrast 82, and width 4’ (Anderson 1985: 31). More recently, researchers also use artificial neural networks to perform feature extraction and use gestalt principles to scan a visual buffer for structure and form. But these newer models still presuppose the existence of features that are immediately given to the conscious mind. From this perspective, then, students extract the patterns from the visual spectacles presented to them (e.g., in a demonstration) that create some patterns on their retinas. If students do not see what they are supposed to see, the problems are attributed to deficits in their minds.
Recent research in the neurosciences puts such conceptualizations into relief, by and large questioning the existence of the Cartesian observer who extracts patterns that can be represented in propositional terms. Thus, the very process of perception of objects appears to change with experience, though the role of experience in human perception has yet to be fully understood. There is mounting neuroscientific evidence that much of our perceptual apparatus is affected by learning. Seeing is hypothesized to be a way of learning how the world is from the individual’s immediate apprehension of how the world looks. There is increasing evidence that perceptual and motor systems are highly correlated; this evidence supports the hypothesis that the invariant structures of reality unfold in and through active exploration of appearances. In this, neuroscientific research is consistent with views (and explicitly linked to previously developed insights) that have been analytically developed by phenomenological philosophers such as the late Ludwig Wittgenstein and Maurice Merleau-Ponty.

Phenomenological philosophers point out that we always perceive from a first-person perspective: from the inside so to speak. Research in the cognitive neurosciences, too, show that perception is not merely embedded in an abstract world full of constraints; perception actively contributes to the forthcoming of a world through the movements of the person. This world, for the individual, is not the world measured and explained by scientists. Rather, perception is situated so that ‘[w]hat the world is to the organism depends on what the organism is doing and might do next’ (Clancey 1997: 257), and, most importantly, what it has done in the past. At the same time, we do not have to reconstruct objects from first principles based on visible appearance; our knowledgeable interactions with things are facilitated by their functionally significant perceptual properties or gestalts. How this works is largely unknown – but it would be a mistake to assume a simple context-independent mapping between perceptual features of the world and the things we perceive.

One of the most important findings of phenomenological inquiry is the vagueness, blurredness, indeterminacy, and indistinctness of the visual field: there are no such things as visual images of precisely 24 or 25 pencil marks, 100-gons and circles, or gaggles of 100 geese (Wittgenstein 1975). This vagueness, blurredness, indeterminacy, and indistinctness of the perceptual field, rather than being a problem, has to be taken as an irreducible and a priori feature of perception; it has to be taken as a positive phenomenon. This phenomenon has been the focus of research in phenomenological studies of perception: building on Gestalt psychological principles, this research articulates perception in terms of the dialectical unit of figure and ground. The simplest perceptual entity is not a sensation but a relatively precise figure floating over a more indistinct ground. The figure-ground structure of perceptual experience is an invariant of perception, known to be such prior to phenomenological reflection.

We live in worlds that come forth from our actions; we learn as a function of the events and our encounters with the objects in these worlds rather than in scientific, third-person worlds. To understand learning as it arises from individual, subjective experience, we need systematic phenomenological inquiry; the results of such inquiries can then be correlated with those from neuroscientific research. At present, however, scientific (psychological) approaches to learning (science, mathematics)
almost always take third-person perspectives. One of the reasons for the reluctance to adopt a first-person perspective lies in the fact that phenomenological inquiry is charged with being ‘introspective’, ‘fluffy stuff’, and ‘extremely subjective’. This, however, is an inappropriate view. The real aim of classical phenomenological, first-person inquiry is the articulation of experience in terms of concrete universals, which manifest themselves in the particularities of all members without exception. First-person (subject-centered) approaches therefore develop (psychological) concepts that are concretely applicable to every single human being.

In the following section, I provide a first example. Readers are invited to experience the structure of the method first hand. Stop your reading at the places indicated and engage in the inquiry described prior to reading on. In the second part of this chapter, I provide a description of the method designed to inquire into what it might mean to learn something not already known. While staying at the Hanse Institute for Advanced Sciences (as a fellow in the cognitive division), I conducted studies of physics students in the process of learning about electricity. I wanted to better understand their learning processes, and therefore engaged in first-person investigations of perception.

Fundamentals of Visual Perception

One of my own first experiments of this kind involved a classical image used in Gestalt psychology (Fig. 2.1). What do you see? Are there different things you can see? If you can see several things, what do you have to do to go from seeing one thing to seeing the other thing? That is, what are the conditions for seeing one thing and how do the conditions have to be changed to see another? Attempt to find answers to these questions by engaging with the figure prior to reading on.

In the introduction to this book (chapter 1) I note that epoché has an initial phase during which experiences are systematically produced. In the preceding paragraph, I invite the reader to varying the perceptual experience without requiring any systematicity. During this phase, first-person researchers suspend their beliefs about the entity, here the drawing denoted by the term ‘Maltese cross’. The intent of this phase is to bring about a conversion from the content to the process of seeing. That is, during this conversion, the attention is changed from the content of experience – the what of seeing – to the process of experience – the how of experience. During this phase, there is no judgment. We accept all experience without

1 I find it useful to regenerate such images on the computer and then look at them against a completely white background. Working with a graphical software package, such as Adobe Illustrator, I have conducted experiments, such as the one described here, on the airplane. The advantage of using a software package is that one can systematically vary or change the image under investigation.

2 It is actually possible to see many other things than the Maltese cross. It is possible to see the figure as a square circus tent from above, a cross of the German Order, a cross of the Teutonic Order, a simile of the cross of St. Benedict. We limit our present inquiry to the Maltese cross, even though one might design experiments concerning variations of the cross and the conditions to perceive it as an instance of one or the other crosses that might be perceived.
particularly paying attention to or preference for one or the other. That is, this first stage of the first-person inquiry requires an unprejudiced openness to the details of experience. Up to this point, in your first attempt, you may have simply noted the two crosses that can be seen: although there is but one material configuration – the ink dots on the white page that make Fig. 2.1 – there are at least two figures that can be seen easily against (or as floating over) a diffuse ground. (Go to the appendix A1, p. 249, if you require some assistance with identifying the two crosses I am referring to here.) Gestalt theorists have explained the phenomenon in terms of the law of proximity, according to which items that are closer together in physical space are grouped preferentially. In the present situation, the cross that is oriented along the diagonals tends to be perceived preferentially – that is, as an average across persons – rather than the upright, broad-leafed Maltese cross. Can you see the second cross stand out against everything else as ground?

There are actually two issues that we have to research. First, we see a cross. That is, we see a figure that has a particular internal structure. In the case of the broad-leafed Maltese cross we see four leaves along the vertical and horizontal axes. Second, we see a cross against some ground. How is it that we see the cross as cross? And how is it that we see this figure (cross) in the first place? That is, there are two aspects to our perception, one leading to the perception of the internal structure, the other one leading to perception of the overall structure to everything else outside of it.

With some practice, you notice the upright, broad-leafed Maltese cross as a figure with the remainder of the square as diffuse ground. Or, if this was the cross that first stood out in your perception, practice until you can see the other, narrow-leafed cross to stand out. You want to arrive at a point that you can, at will, see one or the other. Remember, our goal is to vary this experience so that we can investigate the conditions for seeing one or the other. We are not interested in the fact that we do see the broad-leafed or the narrow-leafed Maltese cross. We are about to investigate what the conditions are for seeing one or the other.

At this point you should be at ease with seeing one or the other cross. Do not continue until you can switch back and forth between the two images.
Before reading on, think about this. You may have noticed already that you always see a figure; but you do not attend to the ground. That is, when the broad-leafed Maltese cross stands out, this is what you see against everything else, which is rather indeterminate. You do not see the broad-leafed cross against a narrow-leafed cross. This is so because there is always something constituting a figure; but the figure always is against a ground. You do not attend to the ground, which is precisely why the ground is ground. If you attend to that aspect of the display, it will come to be the figure against everything else as ground. Figure and ground constitute each other. I therefore write the pair dialectically: figure | ground. This notation is meant to make salient that each term depends on the other. We cannot have figure without ground, and ground is ground precisely because it is not figure. For any particular something that is figure, everything else is the ground. In fact, there are not two phenomena that work together, one figure, the other one ground. There is one diastatic figure | ground phenomenon. We see below the work that the eyes do to accomplish a figure standing against the ground. Once we understand this work from our inquiry, we also know why figure | ground is one phenomenon rather than a combination of two phenomena.

Now we move to the next stage in our exploration. Remember, this kind of research is not about having this experience. It is about exploring the conditions of having this experience as compared to other possible experiences. We want to know more about the conditions for seeing one rather than the other cross. This means that we have to systematically move between the two figures so that we can explore the process that brings about the change in figuration. Gaze at the image and make it switch back and forth between the two configurations. You may look at one of the figures, let us say a broad-leafed Maltese cross, and then close the eyes. Open the eyes again but with the intent to see the other cross. Practice so that you can produce a switch between the two as fast as you can flicker with the eyes. Once you can easily switch between the two figure | ground configurations, we attempt to understand what makes you see the broad-leafed cross in one instance and the narrow-leafed cross in the other? What are you doing without being conscious thereof that brings about the switch between the two ways of perceiving?

Your inquiry will show that the figure | ground reversal, which here is a figure to ground and ground to figure transformation, is associated with a shift of your focal point. If you have not yet seen it on your own then return to the image. Place your perceptual focus on a point about one-third of the distance between the center and the outside border and in the center of the vertical leaf. You will see the cross to which this leaf belongs: the broad-leafed Maltese cross. Now move the focus to a point near the diagonal axis, again about one-third of the distance between the center and the corner of the square. You notice that the narrow-leafed cross comes to be the figure. Move back to the first focal point; then return to the second. You notice the switch between the two crosses. That is, moving back and forth between

3 *Diastasis* means separation. The phenomenon therefore is one shifted with respect to itself: it is non-self-identical.

4 If this does not happen right away, then the problem is of the kind that we explore below (chapter 12): the separation of a description of an action, a recipe, and the action itself. Once you have produced the intended action, the description will be obvious.
the two focal points switches between the two figures and, equivalently, switches between the two grounds. In fact, what is figure in one situation is ground in the other. We now know more about what makes something a figure and everything else the ground; and we can use this knowledge intentionally to reverse figure and ground. This figure | ground structure is in fact an invariant of perceptual experience, whereby the ground becomes increasingly indeterminate whereas the figure comes to be increasingly determinate (Thompson et al. 1999).

We therefore have arrived at a first result of our inquiry. We can intentionally move from one figure to another by choosing a particular focal point. Now, we have to ask immediately: Is it the focal point that determines what we see? How is it then that we see what I loosely call internal and external structure? What would happen if we were not moving the eyes at all?

It is not easy to get the eyes to stop moving so that the figure we look at falls onto the same place on the retina for an extended period of time. Psychologists actually have devices for fixing the image onto the retina. With such a device it would be easy to study what happens if the effects of eye movement on perception are eliminated. But, with some practice, we can get to that point.\(^5\) I find it easiest to do this experiment with one eye only. Return to the Maltese cross (Fig. 2.1) and focus on the intersection. Try keeping the focus without letting the eye slip. You may soon notice that at first some of the lines begin to turn into a light grey. With more practice, you will experience the entire visual field turning into a continuous grey. Under strictly controlled experimental conditions, this extinguishing of the figure occurs within 1–3 seconds (Yarbus 1967). Because it will take a while to get to that point, you may want to read on and take my description on faith for the moment and return to practice the experiment at some other time.

We therefore have arrived at a second result of our inquiry. When there is no movement of the image on the retina, such as when the eye is focused onto the same spot, then the image will disappear and we see nothing but a constant grey.

We can now stop and move to the second stage of epoché, which may lead us to results or hypotheses that can be investigated by means of further experimentation. In this second stage of the process involves, as I point out in the introduction, a systematic analysis of the results obtained during the first stage. I have already begun this second phase by stating the first and second results of the experimental phase: (a) what I see as figure depends on the focal point and (b) no eye movement, or rather, no movement of the retinal image implies no figure at all. We can generate some further results or hypotheses if we think about the implications of these two results.

The first result shows that the movement of the eye to a new focal point produces a shift in the figure | ground configuration. I know that in each of these posi-

\(^5\) The effect was first described already in 1804 by Ignaz Paul Vital Troxler and known under the name of Troxler’s effect or Troxler’s fading. Nowadays, various means are used to achieve it. The image can be projected by means of a contact lens onto the retina, where it will stay even if the eye moves. The object movement also may be adjusted to the eye movement so that the former cancels the latter and the image remains stable. Finally, the image may be projected via flash, which creates an afterimage. As readers will have experienced, any after image will fade within a few seconds. *Eye Movements and Vision* (Yarbus, 1967) provides a good introduction to the general topic of perception.
visions, vision would disappear if the image were to be fixed on the retina. Thus, movement is required to see anything at all. But what is it that allows me to see a narrow-leafed rather than a broad-leafed Maltese cross? There has to be something that distinguishes the two perceptions. Or, to sharpen the point I am driving at: What is it that allows us to see a cross rather than a line or a triangle? It is not a simple apperception of the thing – e.g., it has been suggested that ‘we can perceive a whole geometric figure . . . we can perceive a whole line as simultaneous’ (Piaget 1970: 61) – but rather, even the simplest thing such as a line is the result of eye movement that distinguishes a straight line from a curve. The eye movement in each case is not the same. Thus, we are led to the realization that two movements are required, one that produces the figure | ground distinction and the other that produces the particulars of the figure as this rather than another figure. Or rather, we could state this as a hypothesis and then engage in subsequent investigations to find out about the eye movements that allow us to view a straight line rather than a curved one, a rectangle or square rather than a triangle or circle. At this point, I do not intend pursuing this line of work but simply refer readers to some experiments.

Thus, recent physiological studies show that the intensity of the figure | ground distinction is a function of saccades, that is, the slight, unconscious eye movements that shift the image on the retina (Supèr 2006). In the book I refer to above, readers can see what the eye does when there is a more complex displays, for example, one involving a square, a triangle, a circle and two sets of straight lines, one oriented vertically the other one horizontally (Yarbus 1967). One observes that even when the eye follows a line – these are the movements that produce the line as line – there are saccadic sideward movements – these stabilize the line against the ground. As a result, if there is an array of three vertical lines (Fig. 2.2a), the instruction to follow the lines will lead to a corresponding recorded eye movement (Fig. 2.2b); and the instruction to count the number of straight lines will also reproduce the lines and the sideward movement (Fig. 2.2c).

There are some tremendous implications that derive from this investigation for my understanding of cognition. *If visual perception requires the movement of my auto-sensing body, and if it requires sensing, then whatever I see as an object independent of myself actually involves my flesh. What appears to me in my percep-
tion appears as it does because of the specificity of my, specifically human movements and sensibility to be affected. The world and I are intertwined!

In this section, I engage the reader in an exploration of visual perception. At this point, we have arrived at some basic understanding of what happens when we see something. In doing what I ask you to do, you actually did the experiment on your own. This comes with two advantages, one with respect to method the other with respect to the findings. In both instances, we can learn something more than we have done so far. By doing the experiment, you have lived rather than read about the method. You have enacted the method, and therefore practiced it. You have, in and through your investigation, done what you need to do when you engage in a first-person inquiry. In this way, method is not just something you read about in a book but is something that you actually do. This is what I had in mind when I created this series for Sense Publishers, concerned as it is with the praxis of research method rather than some account of research method. That is, once you will have done such inquiries sufficiently often, you will be competent in the practice rather than just knowing about it. The latter might involve being able to describe and talk about it, as sports journalists comment on professional athletes and games, which they can do without actually being professional athletes themselves – though, in a very strong sense, they do not know with their bodies the phenomenon (i.e., what) that they are talking about. Having done first-person inquiry gives you a real understanding, one that is engrained in your doing, in your dispositions, rather than one that you have to think hard about to make it work.

The other aspect of this way of working is that some result that natural scientists already have researched or will be researching in the future, are known to you in and through your personal, pre-reflexive experience. In the present case, I refer to the earliest accounts of visual experiments in the early 19th century, and subsequent work published in the 1960s. Other work – such as the findings of the relation between figure | ground strength and the saccadic movements – however, has been published only recently. In this same vein, a study published 1997 in the flagship journal of the natural sciences, Science, about the way in which we perceive spatial objects, suggests that their results had been anticipated by the philosopher Maurice Merleau-Ponty (1945) in his book about the phenomenology of perception. For me, personally, coming to such results that are confirmed by third-person research is of utter gratification, as it provides me with the sense of a true understanding, something that has become apparent to me in and through my lived experience, rather than something that I know and master symbolically. Such symbolic mastery is not mastery of the real thing. It is superficial, in a way. We do not feel it. Experience, on the other hand, is essentially pathetic. Because I have experienced what happens in perception, I can also experience sympathy and empathy, which I cannot truly do when something I know is not related to pathos.

My own research is concerned with the study of knowing and learning related to mathematics and science. The present method and results have assisted me in understanding demonstrations that high school science teachers or professors use as part of their lectures. Thus, if students do not already know what is to be seen or what is relevant in a demonstration, the results of the current investigations allow us to anticipate that there will be differences in what students perceive. But these differences are not the result of conscious ‘constructions’; rather, they are the re-
sults of non-conscious processes: where the eyes focus and what they do thereafter. There are implications, however, to making different observations. Thus, if these differences among students and between students and teachers/professors do not come to the fore, then the lecturing individuals might assume that the students had seen something that allows them to make sense of the theory taught when in fact the students have seen something else. It then will make absolutely no sense to the students what the lecture is about; or alternatively, they will produce a fit between what they hear and what they have seen not realizing that there are grave inconsistencies. In one research project conducted in an Australian high school, I could show precisely this (Roth et al. 1997). Some 18 students saw motion in a demonstration and five did not. To make sense of the lecture, however, one had to have seen motion. When the 18 students provided explanations, these could not make sense because the teacher assumed no motion had occurred and required answers that explained no motion rather than answers that explained the motion. What is it that made some students see motion where others did not see it?

We can extend our thinking about the results of this investigation, and this leads us into the third stage of epoché. This third stage requires us to ‘sit still’ and let the results work upon us. The true impact of some findings will become evident to us only later. We may suddenly have an insight or wake up at night and know, all of a sudden and without having intended it, what our findings really mean or imply. For example, I did not immediately realize that the present results also show us that perception is not a matter of ‘interpretation’. It is not that I see *something* that I then interpret to be a Maltese cross. My eyes work on their own, based on my (their) immanent knowing how to move; they do not require the conscious mind to follow movement trajectories that allow me to see what I see. What is there to be seen then is given to me in my perception. Their (my) movements are engrained, so to speak; these movement forms constitute kinetic melodies that my eyes recall on their own without requiring my consciousness. It is during a time of non-attention that I have come to accept new understandings that emerge in my conscious awareness. It is during such moments of non-attention that I have developed the insights about perception described here. In fact, this third stage of the phenomenological epoché is of sufficient importance to be investigated as a phenomenon in its own right: Knowing as something pathic, *being given* (to us), as a recent book title suggests (Marion 1997), rather than as something intended. We encounter this aspect throughout the present book, but especially in chapter 9 devoted to investigating the passions.

One way in which readers may want to pursue the present inquiry is by systematically varying the cross itself. Again, this is easily done using a graphics program that affords changing the relative angles of the two crosses, which may produce further changes of interest to us. That is, we can always extend some inquiry and thereby produce new variations that allow us to better understand the conditions for having *this* rather than *that* (perceptual) experience. I have produced one such change using the Maltese cross (Fig. 2.3). But for a true inquiry, I would produce many crosses if the purpose of my investigation were to understand the role of proximity of adjacent lines on salience of a particular figure. Thus, for example, the investigator may ask in which configuration the vertical cross rather than the diagonal one will be dominant, that is, will be the one that springs first into the
It turns out that sometimes one investigation will lead us to something unsuspected so that we learn about something else. Thus, in the next section, I engage readers in an inquiry that goes, among psychologists, under the name of Müller-Lyer illusion. When I first investigated it I wanted to find out why two lines appeared to have different lengths even though I knew they were of the same length (I had merely copied and pasted the second one). That is, on the surface, this might look like an investigation that belongs into this section, where we produce simple perceptual experiences, such as the perception of a straight line. It turns out that the results have taught me something about the relation between perceptual depth and its effect on the perception of line length.

The Perception of Depth

My interest in the relation between perception and the three-dimensional nature of the world arose for me in the context of doing a study on young children’s learning of geometry. I was especially interested in understanding what the second-grade students I was following already brought with them in terms of experiences and competencies that were presupposed by the lessons and that are part of the fundamental experiences of being in this world. The basic things that the children were working with included objects standing for cubes, cylinders, rectangular prisms, pyramids, spheres, and so on. While writing a chapter with a graduate student, we asked the question that also became part of the title: ‘What makes a cube a cube?’ We begin the chapter with a drawing (like Fig. 2.4) but then, because of the book’s

6 The practical things we encounter in the world are only approximations of the things that geometry deals in, which are ideal objects with properties that real objects can have only in a limit case.
focus on the interface between body and culture, go on to relate children’s bodily experiences in cultural settings. But in pondering the question subsequently, while looking at the figure again, I began to investigate why we see the line drawing on a flat page as a cube and not as some assembly of straight lines in a two-dimensional plane. ‘What makes this drawing’, I began to ask, ‘appear as something three-dimensional?’ I asked in particular because I could not buy into the constructivist answer that the perceivers ‘construct’ what they see. Clearly, constructivists confuse what appears on the retina with some inner representation that is subsequently interpreted by the conscious mind. This means that the lines would be on something like an internal mirror. Some inner mind would then look at this image and interpret the combination of lines in this or that way, thereby constructing it as one or another cube, a combination of lines, or still something else. The preceding investigation with the Maltese cross shows that prior to any rational conception and interpretation, the eyes are engaged in movements that make us see something. We may liken what we see to other experiences, for example, see Fig. 2.1 or 2.3 as instances of the Maltese cross, or a cross of the German Order, and so on. But by the time there is something that can be likened to something else or given a name, other events have happened. These events are not apparent to consciousness but can be, nevertheless, investigated using first-person methods.

The figure is known in the psychological research as the Necker cube (Fig. 2.4). Although there are but a few black lines on a two-dimensional sheet of paper, most research participants report something like ‘I see a (three-dimensional) cube’, ‘I see a cube from below that extends from front right to back left’, or ‘I see a cube from the top that extends from the front left to the back right’. When asked further, participants may outline, moving their fingers along the lines, where they see the different surfaces of the particular cube they see. In their statements – which may be provided verbally alone or communicated using a range of semiotic resources – they provide accounts or reports of experience. What they have not provided us with is access to the actual lived work that is obliquely referred to in the account/report.

To find out more about perception, we need to set up an experiment, which begins with epoché and its three phases: generation of experience, reflection, and
passive acceptance of new understanding. We begin with the generation of experience.

So what is the lived work underlying the report of seeing this or that cube? The drawing (Fig. 2.4) allows us to investigate the process of perception and how we come to see in depth what we see in depth, that is, the object of perception. Upon first sight, you may see a cube, if you see a cube at all, from slightly above extending from the front left to the back and right. But, if you see a cube, you might actually see one from below and extending from front right to the left back. If you do not see one or the other, stop here and try. (You may verify what you perceive with the two drawings in the appendix A2, p. 249.) These two perceptions are the two spatial configurations that are seen in psychological experiments, where they are categorized as ‘cognitive illusions’. I know from lectures when presenting this drawing that many people initially will see only one of the two cubes; but as soon as audience members have seen the second one, they will be able to see them over and again – which means that they (their eyes) now have learned how to see the second cube. Rather than wondering about illusions, let us engage in the analysis of the lived work of perception to find out what is at the origin of the perception of the cube in one or the other way (i.e., from below or from above). We may do so by, for example, by exploring how to quickly switch back and forth from the cube seen slightly from above to the other one seen from below.

To begin with, look at the figure (Fig. 2.4) and allow the first cube to appear, for example, the one that you see from below and extending into the back toward the left; then intend seeing the other one until you see it. Move back to see the first; return to the second. You might also do this: look at the first cube, the one seen from the bottom and extending toward the back and left. Close your eyes – but intend to see the other cube upon opening the eyes again. Practice until you can switch between the two with the rapid flicker of the eyelids. Once you achieve this, focus on and observe what is happening with your eyes during the flicker. That is, how do you (intentionally) generate this or that experience voluntarily?

You may notice that if you place your eyes to the lower left corner that appears inside the set of lines and then move toward a non-present vanishing point to the left (‘along the surface’) – this may be along the edge leading from the ‘front’ vertex toward the back left – then the cube-seen-from-below becomes instantly apparent. Similarly, focusing on the equivalent vertex further up and to the right and then moving along the edge ‘backward’ to a non-existing vanishing point allow you to see a cube-from-above. That is, unbeknownst to your intellectual consciousness, the movement of the eye from one of the two vertices toward a non-existing vanishing point in the back to the left or right of the diagram creates one or the other perceptual experience. This, therefore, is a statement about how the work of seeing produces the cube even if we do not consciously attend to it. If the eyes do not make these movements, then the cubes do not appear and the lines remain on a flat surface.

As a first result of reflective analysis, we note that this experiment shows us that the cube is not (intentionally) constructed because when you looked at the figure for the first time, the cubes appeared, you did not intentionally construct it. And for the very first time you looked at the figure, you might have not seen any cube at all or only one and not the other.
This result generates new questions. How do the eyes know to move like this to make the cube appear? A first clue comes from our experience itself, especially when you were seeing initially only one cube or no cube at all. But as soon as you have been able to see one or the other or both cubes for a few times, you can easily see it (them) again when returning to the figure. This shows us that our knowing emerges from initially uncoordinated movements during which the flesh auto-affects itself such that it develops the capacity to move and develops an *immanent* memory of this capacity. We know that it is not reflective a reflective kind of memory, because we do not intentionally have to place our focal point and intentionally move the eyes. I (my eyes) *immanently* know what to do and do again to see the cube. In other words, during first random movements and before I have seen a cube for the first time, corporeal-kinetic movement forms (archetypes) emerge that would be more ancient, more basic than any ‘image schemas’ or ‘sensorimotor schemas’. Our perceptual ways are *given to us in an initial event of donation.*

In the third phase of the inquiry, we may realize that one of the upshots of this investigation is this: We do not just see or recognize a cube because its mirror image is produced on the retina. Rather, our eyes have to do work; and associated with this work there are changes on the retina. Based on the changing images, and based on prior experience, we have learned to see cubes. We can see cubes because our eyes (we) know what they (we) have to do to make a cube appear. It is in the non-perceived movement of the eye that the distension and dehiscence between the cubical figure and the ground occurs and that the former comes to detach itself from the latter. But we should not think of the image as something standing before the ground, as if projected against a screen; rather, in the image the ground is rising to us. It is not merely, as enactivist theorists would say, that the organism is bringing forth a world – the world gives itself to the organism, which learns how to make any figure reappear. That is, the movements of the eyes are not random, not constructed, but they are entrained by the structures of the material world in which the organism is embedded. ‘It is in reference to my flesh that I apprehend the objects in the world’, as we have seen in the preceding section, so that ‘in my desiring perception I discover something like a *flesh* of objects’ (Sartre 1956: 392). It is in reference to my flesh that I apprehend the objects of the world, which means ‘that I make myself passive in relation to them and that they are revealed to me from the point of view of this passivity, in it and through it’ (ibid: 392). There is therefore a fundamentally passive component to perception that tends to be obliterated in the (social, radical) constructivist literature but that is essential to understand the dual, subjective | objective nature of mathematics or science that has become the point of unresolved contention between formal and constructivist accounts of these fields.

We can extend this experiment by changing the figure, turning it into one that follows the laws of perspective drawing. The investigation then constitutes another *variation of experience* – everything else being the same – teaching us about the underlying processes of perception. I begin by making a duplicate of the Adobe Illustrator™ file that I had used to make the first cube (Fig. 2.4). I draw four lines from the ‘front rectangle’ so that they intersect somewhere in the background to the right and back of the cube. I then use the individual point selection tool of the
software to move the corners of the back square onto the corresponding line so that the four edges that lead from front to back all fall on a line. This gives me a new drawing (Fig. 2.5), which I can use for the same kind of investigation as before. (The steps in the construction are shown in appendix A3, p. 250.)

Readers may stop here and do this experiment on their own. You may notice that the cube seen from the top – oriented from the front left to the back and right – is more prominent than before, and certainly more prominent than another three-dimensional figure that we can see. If you do not yet see it, try what we have done before. Move to the lower of the two corners within the outline and move your eyes along the edge toward the left and back. What do you see? It is no longer a cube but a truncated pyramid – the front square appears smaller than the back square. That is, when we do the switching part of the experiment, we also move from a cube to a truncated pyramid.

An extension of these experiments came for me from another one related to the perception of lines. While on some long flight home from a conference, what is known as the Müller-Lyer illusion (Fig. 2.6) came to my mind (notice the passive construction of the sentence) while thinking about the perception of lines in geometry. I first took a pen and drew some lines into my notebook but then realized that the hand drawings and perhaps the background of the notebook itself – drawn lines to be written on – interfered with the effect I remembered to be associated with the phenomenon. An idea came to me: Use the drawing software on my laptop, draw the figure, and then begin investigating it.

As I began, I knew that the two lines were of the same lengths but could not get rid of the appearance of lines of different length. As much as I tried ‘constructing’ them the same in my mind, they appeared (looked) different. I was wondering whether I could make the illusion disappear by squinting or by turning the laptop in different directions. But nothing helped. I then had another idea: remove parts of the arrows on one or both of the figures to see how this would affect my perception. I then systematically removed lines only on the left or right or only on top or the bottom of the arrows. This, thereby, constituted a systematic variation of the conditions of my experience. I was attentive to what my eyes were doing, thereby coming to realize that they were following the arrowhead lines to make something like a perceptual completion. Readers who want to find out for themselves should stop here before reading on.
To find out what happens, look at the right-most variation of the Müller-Lyer lines (Fig. 2.6). As the eyes follow the remaining lines from the arrowheads, you notice how they follow these so that the horizontal line appears to be in the back; the eyes follow the arrowhead lines from the horizontal line toward the back in the lower instances. I only realized this after some reflection (second phase of epoché) and after leaving the experiment for a while (third phase of epoché): The two instances are like fragments of railroad tracks, where the tie is further back than the ‘free’ part of the arrowhead in the upper case, but where the tie is further in front than the arrowhead in the lower case. I realized that my eyes were doing what they have learned from parallel lines that recede into the back and toward the horizon (e.g., while standing on a railroad track following them into the distance. Even though the ties of a railroad are of constant length, those further away and in the back look smaller. If I were to see two ties of the same length but one further away from me than the other, the former would appear larger, because a tie of the same length that is closer to me would appear smaller.

We can now take these results and reflect upon them in the context of the second cube investigated earlier. In the perspective drawing (Fig. 2.5), the eye sees the smaller square as lying behind the bigger square but consider them to be the same size, as it would be for any railroad tie a little further away that appears smaller but that the eye recognizes to be the same size. On the other hand, in the second perspective, the actually smaller square comes to lie in front of the bigger square. Now the effect is even further emphasized. The drawing appears like a truncated pyramid with the base further in the distance than the smaller square. The effect with the Necker cube is enabled by the identical sizes of the two squares, which allows one or the other cube to be seen alternatively, each equally possible because the relations between the front and the back square – and therefore the corresponding horizontal lines that constitute them – are the same.

Fig. 2.6 The original version of the Müller-Lyer ‘illusion’ and two among many systematic variations produced with a drawing program. How do the changes in the drawing change what we see?

An Experiment in Original, Everyday Perception

During a stay in the ‘Neurosciences and Cognitive Sciences’ section of the Hanse Institute for Advanced Studies (Delmenhorst, Germany) I took this problematic head on: How does something that we have not known appear to us in our perception? While analyzing the videotapes collected during a 20-lesson tenth-grade high school physics course on static electricity, I also conducted an inquiry into the experience of learning and into the process of coming to know. I had been inspired by
a series of publications concerning first- and third-person methods (e.g., Varela 1996; Varela and Shear 1999) and therefore kept daily notes not only about my learning while analyzing the videotapes – my third-person perspective on learning – but also about things I noticed while riding my bicycle through the countryside for pleasure or while riding to the university. Most importantly for my research, I designed an experiment for the purpose of tracking knowing, learning, memory, noticing something for a first time, and so on. In this experiment, I would take the same tour for 20 days in a row. Each time preceding the trip, I would write down everything I anticipated seeing – an empty set {} on the first day, because I had never been where the trip would take me. Upon returning, I would write either in my notebook or in my dated electronic files what I remembered having seen. The trip turned out to be about 25 km in length, taking me from the Institute outside the city, through valleys, fields, and an extended forest and back.

Central to the experiment were the planned trips themselves. Each day I would go out – rain or shine – and, upon returning, write my entries including the following:7

Day 1. As I was riding along, I was aware of my surroundings (trees, flowers, and so forth) without really focusing on anything in particular. Although I was aware at the moment outside of what I was looking at, here at home, I remember few things in particular, few stretches of the trip. But those things I do remember are associated with a particular type of experience. There were things, like a particular house or a road sign ("Landwehr") that was pulling my gaze to take a closer look. As I focus, sometimes with considerable delay, a memory surfaces – the house looks like the one I had lived in 40 years earlier, ‘Landwehr’ was the name of a professor and of a street in the city where I went to university. [E01p7–8]

Today (my fifth) trip, I notice for the first time the little plates, inscribed with numbers that increase by 0.1 about every 100 meters. I infer that these are distance indicators with reference to some starting point. [E01p31] (I subsequently found the starting point during an explicitly planned trip.)

Today (my seventh) trip, I notice for the first time the upper parts of two gigantic towers that are visible above the treetops. [NBp13] (From then on, I not only saw the towers each time I came by this place, but I was expecting them to show up even before I got to the place.)

Later on, sometimes on the same day, sometimes following a particular observation during the data analyses that I conducted at the time, I returned to notes and drew on one or the other to illustrate some idea I was having or to make a comparison between what I had experienced and what I observed on the videotapes. For example, my analyses – stage 2 of the epoché – included the following commentaries:

The movement of the body with respect to the surroundings and of the eyes with respect to the body is so central to the experience that it is easily over-

7 I use a bar on the left of those texts that have been excerpted from my database. Codes in square brackets – e.g., ‘[E01p7–8]’ – refer to the original data source (‘E01’), specific electronic files and the page numbers within the files (‘p7–8’).
looked. These data show that I am perceptually tuned to my surroundings, which enables me to move about; my perception is indeterminate: initially, few features come to stand as figures against the ground, to be remembered subsequently. Before my awareness grasps detailed features, the physical world appears to exist, indistinct, and as invitation to be articulated. I remembered few concrete things after the first and even subsequent trips along the same route. However, in the course of the repeated experience, new features emerge into consciousness: I see the road sign with the ‘Landwehr’ inscription, the distance signs, and the towers for the first time.

Despite the self-awareness that the experiment is about recalling the maximum number of features and despite an extended effort to recall as much as possible, I perceive one or more new features ‘for the first time’, each time I travel. Consequently, my world becomes more (perceptually) articulated, allowing me to articulate it (verbally) in my notes. At the same time, certain entities (e.g., the ‘Landwehr’ sign) have a certain ‘grabbiness’, which turns out to be related to (and is articulated in terms of) previous experience. Encountering these entities brings forth an experience of déjà vu, including specific details (features) that come to stand as figures against ground. The descriptive articulation follows the perceptual articulation.

It is with respect to this last episode that I articulate the first-person method further. What became important in this experiment was to notice those aspects of original perception that we do not normally attend to or take for granted. The following analysis of the events on Day 7 of the experiment actually shows an engagement with a form of experience that I first became first aware of in my teens. In those days, I was taking the bus from my village to the nearby city to attend an academically oriented high school (Gymnasium). Because my village was the second-to-last pick-up location, the bus was always full and I had to stand near the driver or even on the steps next to the door up front in the bus. One day, just as we drove down the valley toward the city, I noticed a cathedral that I had never seen before, even though I had stood in this place in the bus for the past seven years. At the time, I could not make sense of this experience and had long forgotten about it. Why would it be that we can look at some scene every day for more than seven years and then, all of a sudden, see something that I had never seen before and yet which predates my existence – the cathedral was hundreds of years old?

In the following, I provide an example of the way in which I ‘worked up’ the initial entry into my logbook that expands on the original experience and sets it into the perspective of the analytic questions that I have had with respect to learning and the problematic framing thereof by constructivist theory. The episode shows that the phenomenological epoché (a) does not take the world in the way it offers itself, where we do not pay attention to much of the surroundings but take them for granted (e.g., we seldom become conscious of the floor or street we are standing or walking on) and (b) notes the different levels of awareness related to (specific aspects of) the surroundings.

On the side of the road I saw a set of twin silos. They were so big that they can easily be found on aerial photographs, sitting about 40 meters apart at a distance of 200 meters from the road. An entire slew of questions began to
appear and unfold in my mind. How could I not have seen these twin silos on my first or at least second ride? I immediately realized that I could not have answered questions about the twin silos following my six earlier trips, and, during an examination, would have failed the test even though the examiners could have thought that I had had already six times the experience. I understood that I could not have aimed at seeing these twin silos precisely because I had no clue about their existence. I was in a situation not unlike that in which students find themselves when science teachers set up in ‘inquiry learning’. How was I to know that these twin silos were relevant and not something else? There is nothing that ‘construction’ of my experience would have allowed me to arrive at the twin silos, because nothing that was given to me in my perception would have lend itself as material to ‘construct’ anything useful from it.

Another important question during my inquiry was, ‘How did these shapes come to stand out against everything else as a ground?’ ‘Why these shapes and not some other shapes that could have become figure against ground in precisely the same setting?’

As the questions raced through my head, I experienced another shock: I realized that I had forgotten the world that existed for me before. Now I was thinking about a world populated with the twin towers, and I asked questions such as ‘How could I not have seen the twin silos?’ I realize that these questions presupposed the existence of the silos prior to my first actual experience of them. I immediately realize that if there had been a teacher with me, presupposing a world in which the silos existed, would anticipate me, the student, to see the twin silos, whereas I could not intentionally look for them. And this, I realize today, is precisely where Jean Piaget and his constructivism are wrong. He assumed that there are (mathematical) structures in the world, which children (he considered them to be little scientists) can discover. Thus, he assumed children to look and interact with a balance beam and then, depending on their developmental stage, abstract a more or less mathematical pattern. But to do so, one has to see the weight as weight and distance as distance, which is absolutely not the case even among older students who might see, for example, locations on the beam and number of objects suspended. Even mature scientists may see one aspect, such as the slope of the curve, when the relevant values required in solving a problem are the absolute values of the curve. There is nothing, I realized, that children can inherently abstract from the balance beam much in the same way that there was nothing for me to abstract the twin silos from the perceptual experience. These things did not exist for me. I lived in a world without twin silos.

For science teachers, therein lies the quandary. Having forgotten about the world without the twin silos, they can no longer empathize with the children and students, who inhabit a world that they have forgotten. They inhabit a world that they must forget unless they are to drown in the co-presence of all the worlds that they have lived in before. As I was able to experience, this world is in continuous flux because with every bicycle ride, there were so many new features that had come to stand out for me. Today, I know that
learning is associated with a form of amnesia, a forgetting of the world in the ways we know it. (Roth in press)

We see in this excerpt from my analytic writing how the method separates the specifics of the experience, here the first emergence of the twin silos into the consciousness, to unearth and excavate the invariants. To be sure that something is invariant across experiences, analogies and parallel examples are useful, because it is precisely in the comparison that the invariants become invariants: aspects that do not vary when we move from one to the other context. The account also shows that I did not just notice the twin silos to go on and no longer attend to them, taking their existence as a matter of course, as something that goes without saying. Rather, I paid particular attention to what was happening at the instant, the process by means of which thoughts and questions arose within me. In fact, the questions that arose were unintended. So we observe a double intention that is oriented, on the one hand, toward the experience of the twin silos emerging into my consciousness, to the process by means of which this occurred, and the events that immediately followed. For example, in the quoted text I attend to the fact that a particular question arises in and constitutive of the experience: ‘How could I not have seen these twin silos on my first or at least second ride?’ Moreover, I also note the next question or realization associated with this question: The twin silos are accepted as entities that existed prior to this experience, that is, during the first or at least second ride. The first question is in fact the same that had first occurred to me some 30 years earlier (around 1970). But it is a keen awareness directed toward the presuppositions and to the questionable nature of the presuppositions in this first question that was occasioned for me in the experience of the twin silos.

What is interesting about this experience is this: it exhibits an orientation toward the process of phenomenization itself. It is not the thing, the twin silos, that is of interest but the very way in which these came into being and what happened to me in and after that split second when these first appeared to me in my consciousness. Here, they are given because visual perception is not aware of them. But it is equally evident based on physical principles that the light from the twin silos must have fallen onto my retinas before. Yet the twin silos did not stand out – they were not ek-static. In this experience, they literally came to be placed outside (me), an expression that returns us to the etymological roots of the term in the ancient Greek language, ἐκτα-, stem of ἐξιστάναι, to put out of place, from ek-, out, and ἰστάναι, to place. In phenomenology (e.g., Henry 1990), using the hyphenated spelling therefore is a means to take us back to the original emphasis on the two parts of the phenomenon, the placing, on the one hand, and the outside, on the other hand. In fact, when the Swiss psychologist Jean Piaget investigated object permanence, he pursued a related phenomenon but from a very different perspective and from a very different epistemology and ontology. He assumed the world to be constant and little children to be deficient thinkers. Through experience, they ‘construct’ object permanence as they become older and develop. For objects to be permanent, these do in fact have to stand out in the way the twin silos came to stand out for me, and in my adult perception: the changeover from perception to stable object occurred so fast that I almost lost my object, the phenomenization of the twin silos as given to my perception and then their becoming the independent (Galilean) objects that they were afterwards.
Over time, I extended the reflections on this experience. Frequently a new realization struck me out of the blue and even though I had not explicitly thought about this episode; but at other times, I realized something new precisely while thinking about the episode in which the twin silos first appeared to me. I revisited this episode in various places to think about learning from the perspective of the learner – including presentations and a book on learning that makes use of the interplay between third-person and first-person perspectives (Roth 2006). That is, in extended reflection with frequent long pauses between the reflective episodes, ever-new realizations were given to me in what constitutes the third part of the phenomenological epoché. That is, the third phase of the epoché, in this situation, was not limited to a brief period following the original experience and the first reflections upon it while I was still in Delmenhorst and in the course of completing the experiment in everyday perception.

Many years after these events, I read a little book entitled La croisée du visible (Eng. The Crossing of the Visible) (Marion 1996); in it, the author takes the question of visibility by analyzing paintings and the work of the painter. Painting gives this philosopher a particular vantage point to provide us with a phenomenology of perceiving something for the first time. When I read the text in the following quotation, I immediately highlighted it because it reminded me of the twin silos. And it is precisely because of the experience related to the twin silos that I found the following quotation intelligible: It made sense because I already have had related sense experiences. ‘The unseen that the painter will look for remains therefore, up to the point of its ultimate appearance, unforeseen – unseen thus unforeseen. The unseen, or the unforeseen par excellence. Like death, which (in principle) is not here so long as I am here, and which appears only when I am no longer here, the unseen remains inapparent as long as it is, and disappears the moment that it appears as visible. The unseen appears only to disappear as such. Further, one is not able in any way to foresee the newly visible on the basis of its unseen, by definition invisible’ (ibid: 54). The philosopher does not stop there but shows that even the painter does not know what he is going to show in and through his painting (drawing). In fact, there are numerous painters who talked about painting as a way by means of which they themselves find out what there is to see. Painting is not expressing what already exists on the inside, in their minds, as if the painter squeezed his/her inner contents onto the canvas. This is precisely the same what others have recognized about everyday (improvised) speaking where speakers themselves find out from the utterance just what they have thought (Merleau-Ponty 1945; Vygotskij 2002). I continue to pursue this inquiry and the methods for such investigations in chapter 9.

Iterating First- and Third-Person Perspectives

An important aspect of my research concerns understanding a variety of phenomena related to the knowing and learning of mathematics and science. To me it is

I am not talking about the situation where a person reads from or regurgitates a memorized text.
always the phenomenon that determines what I want to use as method. I am not (and advise others not to be) a ‘mono-maniac of method’ (Bourdieu 1992) who knows but one method and who selects research problems as a function of it. But despite the popular saying that to the person who only has a hammer and only knows how to operate it, the whole world looks like a nail, many researchers use only the one method they have ever learned, often during their graduate work. I frequently hear graduate students and junior faculty say, ‘I want to do a qualitative study’, ‘I am going to use a questionnaire with Likert-type items’, or ‘I want to do a phenomenological study’. But, I ask, ‘What is your research question?’ ‘What do you want to find out about?’ ‘What are your interests?’ Surely it is not the method – unless you are a methodologist.9 I personally saw a good example of what might happen when a person knows only one method and has to abandon what she really wants to do. I had organized sessions where faculty could discuss and develop ideas for research that they sought funding for. A young colleague was interested in pregnant women who join online forums. Being pregnant herself, she intended to organize such a forum, which would grow as the study went along. The problem is that she only knew how to statistically analyze questionnaires. She wanted to do an experimental study with treatment and control groups. But in this situation, because the women would be joining the forum over time, she could not make the assumptions that are required for a psychological experiment. She abandoned what she was really interested in because it did not fit the method she knew. Rather than pursuing the question that really interested her and in which she had a lot of personal investment and experience, and rather than acquiring the practical understanding of method in the process or by taking some course where she could have been introduced to what she needed, she abandoned researching this line of interest.

My personal advice always is to find a problem and then, if necessary, to learn and evolve the method(s) required for providing an answer. I begin in this way to show that I research some phenomenon irrespective of the method it requires. I do not do a phenomenological study of something, fitting the object of research to the chosen method. Because of this reason, I may actually take multiple methods that give or promise me a better understanding of the phenomenon. My research notes bear witness to the multiple methods, as I hold up the results of one method against what I am finding out using another method. Relevant to this book, I hold up the findings of some third-person method against the findings from a first-person method. This guards me against something that I also experienced in the context of my work at the Hanse Institute. While I was studying the videotapes from the tenth-grade physics class that a local researcher had made available to me, I often found myself in a situation where the colleagues laughed about the students because these were doing this or that. For example, my colleagues laughed about students who said that a plastic foil ‘was used up’ and no longer produced static electricity. However, one night while I frantically attempted to understand and

9 I insist on the difference of method and methodology. A method is the way in which we conduct a research study. Methodology is the science of research methods concerned with understanding these methods. Correspondingly, we have to use the adjectives methodical when the issue concerns method and methodologically when the issue concerns the science of methods.
model some phenomena, I found myself putting plastic foil aside to pick up another one to continue the research. It was in putting a foil aside that I realized I was in the process of doing the same as the tenth-grade students had done. I had observed and noticed in my own actions a behavioral invariant rather than something to be laughed about. Here, combining a first-person method with a third-person method promises new understandings and a critical questioning of our normal ways of seeing things.

In the following example, I exhibit the manner in which my research may unfold. There are keen observations of something in the everyday world (first phase of epoché), which are then closely analyzed to exhibit possible invariants (second phase of epoché). I then explicitly attempt to reflect about the implications for the phenomenon in my research, which, in this example, pertains to learning physics. The difference between the method described here and the one used for investigating spatial perception using the Necker cube or the Müller-Lyer phenomenon lies in the fact that any experience in my everyday world may serve as the phenomenon to be investigated. The question of (perceptual) invariants is posed when I query a different context to see whether there are analogies between the situations. The presence of an analogy – as per the etymology of the Greek word, derived from ἀνά-, back, again, new + λόγος, reason, ratio, proportion – means the presence of one or more invariants. In the following excerpt from my research notes, I dissect the original narrative of an experience (first phase of epoché), typed in italics, and begin to intersperse analytical text (second phase), typed in normal font. As a more advanced part of this second phase of the epoché, I also ask myself what this account of the perceptual experience during a bicycle trip from the Institute to the physics department at the university can teach me about the learning of physics.

May 11, 1999

I am cycling along a trail that was signed as a joint cycling-pedestrian trail. Then, all of a sudden, I see cyclists to my left on another trail that is part of the roadways. I had not seen where the two trails had branched off into separate trails.

In my objective experience there had not been a branch. I rode in a world where there was but one trail. In order to understand my actions, we need to understand what I perceived and thus, my world. For, if we began with some outside world, we need to assume that I was somehow defective in the moment where there was a branch. This would be difficult to argue. Thus, what is most crucial for understanding the actions of the learning and knowing person (organism) is the world from her perspective. We need to know what her world is, lest we want to operate with models in which human experience is always in some deficit mode.
I vaguely remember having been on this bicycle trail one time before. At that time then, my world had included either the bicycle trail only, or in fact a branching point which I had taken in favor of the bicycle trail.

In this case, I had a vague memory. I did not re-member exactly what had been the case before, just an impression that the first time I had come by this point, I had been driving differently. But, while realizing during the second time that there were two trails, I began to objectify this experience. The existence of two trails forced itself onto me. The next time (third) I came by this part of the road, I was consciously aware of the branching point. I perceived the branching point. This part of the road had become differentiated: there existed a fine structure to what and how I experienced it.

We see in the analytical text that this reflection occurs after repeated experiences of having come by this particular point en route to the university. The trip itself was not planned as part of an experiment in perception. Rather, anything and any experience could potentially become the starting point of an inquiry. It is evident that we cannot use ‘everything’, because this would mean that we never get out of experiencing the world to reflect upon these experiences. Perhaps because I was setting myself up in this manner, there were more than the normal amounts of puzzling events that happened to me and that entered my research notebooks or computer files in narrative form frequently accompanied by drawings. The analytic text exhibits my concern for developing an argument for studying learning from a first-person perspective. Whereas this might appear the self-evident thing to do for a researcher with phenomenological inclinations and preference to first-person methods, it was not and still is not the norm in the learning sciences generally and in science or mathematics education more specifically. Here presuppositions reign about what the learner ought to do and generally does not do.

The research note then continues with a highlighted question: ‘What can we learn from this?’ and, more specifically, ‘What can we learn from this especially about learning physics?’ That is, how can the experience of ‘missing the branch in the cycling path’ teach us something about learning physics?

What can we learn from this? (And what can we learn from this especially about learning physics)? Here, the first and second time, I experienced in the world. There was no fine structure, but I found myself on one then on the other trail. What I had perceived was not the world I perceived afterwards, which included a branching point. Rather, in my world there had been no branching point. But at the moment when I saw cyclists left to me on another trail, I was startled. In this instant of being startled, I began to objectify my experience, my presence on the pedestrian trail. Being startled here is similar to [students noticing] ‘This doesn’t work’. But whereas I was already objectifying my experience in terms of a branching point that I had not experienced, the [tenth-grade physics] students did not and perhaps could not yet know (not enough experience, and many more possibilities for doing things that make them arrive at where they are) why what they expected to achieve had not yet been achieved.

But students knew enough to know that what was supposed to happen did not happen. What they could not know is that the reality has to be ‘prepared’
in a quite particular way in order to make physics happen in the way physicists make it happen. Thus, phenomena do not just lie around, they do not just exist, but we must go through a particular preparation to make physics happen to be able to see physics. Physics is therefore not just something that can simply be observed, but is associated with a set of preparations to make it happen before it can be observed.

Readers may notice that the questions are similar to the one concerning the twin silos. But there are other elements in this text that point us to invariants. The text says, ‘I was startled’. It was the starting point of a reflection, an objectification of experience and of a phenomenon. Similarly, I had observed the students producing new observation sentences precisely after having produced expressions of being startled. For example, Birgit was startled just prior to producing the statement about a gap she was seeing between the two electrodes of a glow lamp. Being startled and observing something unexpected for the first time are like two sides of the same coin. They are not two phenomena but one that expresses (manifests) itself in two ways. As my research note continues, we observe a second move. Not only did I relate the experience to the physics students I observed in this situation, that is, in my ongoing research project on knowing and learning in physics, but I compared, in the subsequent paragraph, what I observed in the present project with what I had observed in a physics class in Australia some four years earlier. I note the difference in the conditions that produces a difference in the observation, because the present student could anticipate what they should observe whereas the Australian students were not in such a position.

These students are already at a different point than those that we had observed in Australia. There, students were asked to look for patterns when objects were rolled down an inclined plane. There were no other indications what to do so that student did not necessarily begin by letting two different objects roll down the plane at the same time. When they did do this, it emerged from the contingencies of the setting. Furthermore, these students did not have the same checkpoint. Thus, they were in a double bind. In order to know whether what they had seen was what they were supposed to see they needed to know that what they had done was what they were supposed to do. Second, in order to know that what they had done what they were supposed to do, students needed to know that what they had seen was what they were supposed to see (Roth et al. 1997). Here, students already knew what it meant to work but they could not know what it was that made the outcome of their investigations different from what they expected. For example, there could have been something with the materials used, or with their preparation. But at this point, students’ worlds were not differentiated. Few objects and operations populated their worlds. And from what they knew about these objects, it should have worked that is, they should have seen the bulb light up, and they should have seen the water stream bent under the influence of the sheet which they had rubbed before.

The notes then continue by returning to looking at the students through the lens of what I had experienced. Thus, those students with few prior experiences cannot
know what to expect and therefore ‘are at a similar point as I was on the pedestrian path’. This ‘similar point’ would then orient us to the invariant. However, the note also is cautionary by suggesting that a student investigation in the physics laboratory may be more like an entire bicycle trip. The paragraph that follows expands on the metaphor of the trip, introducing the possibilities of traveling with a map. This is a quite reasonable move in the reflections, as students in a classroom never ‘travel’ on their own but do so precisely in the presence of the teacher, other students, and their textbooks. These provide something like markers that the individual ‘traveler’ may use for navigating an unfamiliar world. Readers may also notice how, without having been explicitly configured or planned as such, doing the investigations involving trips lends itself to specific metaphors, some clearly allowing connections with existing discourses about ‘being-in-the-world’ or ‘finding oneself-in-a-world’. This is both an affordance, an opportunity, and a constraint: Being in language, we cannot ask questions that fall outside of it, so that our questioning itself is a questioning in language. Once we accept as correct the characterization of language as the verbal expression of inner emotions, human activity, or imagistic-conceptual representation, then all questions with respect to language move within this field (Heidegger 1985). The metaphor is used here as a means to think about how students might move along trajectories in their investigations that contain branching points – from the perspective of the teacher, or, with their own subsequent hindsight – that they do not see.

The students with little experience are at a similar point as I was on the pedestrian path (though I knew that I must have ‘missed’ a branch), they found themselves in a situation where they did not expect to find themselves and did not know where they branched off in the trajectory of the investigation. In fact, in such experiments are much more complex and more comparable to an entire bicycle trip where there are many different possibilities for getting off the ‘right’ trail.

Students travel without a map. This is what they are to learn, the map. I already have some familiarity with maps, so that I can project what I might have to do, and what the experience might be like from looking at the map. For example, when there is a green spot next to the road that I need to pass, I know that I am likely to find a park in my experience. The map lets me expect a green space, park, trees, or something of that nature. Furthermore, there might be a ‘T’ in the road such that this becomes a checkpoint for my travel. If this checkpoint does not come up in some reasonable time, I will become alerted and know that I am ‘off track’.

Our discoveries with respect to a particular episode do not end with the analysis. This is only the second phase of epoché. We may actually return to an event repeatedly to reanalyze it. Or we might, in a new context, become aware of the relation that a previously analyzed event has with the current context. In the following excerpt from the research note, the parentheses indicate that at that point in my writing, I was pursuing an idea different from what I was writing immediately before and immediately thereafter. It is literally a parenthetical comment at the instant of writing. But in the course of writing, I remembered the event again and wrote a form of analysis. In part, such writing and re-writing of analysis allows me
(us) to evolve a suitable language for articulating what we can learn from the event. At the outset, we cannot know what this language will be, and therefore, we cannot select it based on some criteria. It is only afterwards, from the perspective of the suitable language that we have actually evolved, that we can say why it is superior to other languages and descriptions these afford. As the date on the note shows, it was recorded two days following the earlier note.

May 13, 1999
(When I was riding my bike down the bike trail one day, and on the next day found myself on the pedestrian path, my world in each case had only one option. I had done what the world afforded me to do. But when I marked that other cyclist where to the left of me, in fact on a trail that was not apparent from my position, I was puzzled, there was a difference between where I was and where other cyclists were. I drove across the grass onto the other trail, which I recognized as such immediately. When I came this way the next time, I re-cognized the situation and perceived the branching point that I had not seen as such on previous occasions. The branching point was at hand, present, cognized and from now on, I could re-present it even when I was not at that place. I could make it present again, make it present strongly even though I was not in the situation. I could carry the image of the branching point, could re-live my passing the branching point as well as the moment of my astonishment when I realized that I was on the pedestrian trail.)

Readers may instantly notice the insistence on presence, on what is present, and on representation and what it affords to being able to recognize or re-live something. That is, this investigation develops a language about memory and thinking, which are topics I take up and develop in chapters 5, 6, and 9. These connections between fundamental processes of perception, sense experiences, and higher-order experiences, sense making and learning, already should alert us to the role that these ‘primitive experiences’ have in complex understanding – even if the connections are not always immediately evident. The struggle of embodiment theories in the current context dominated by psychological theories of information processing and mental representations shows that this connection is not generally recognized even though these may be deemed to be inevitable and necessary by other theorists of cognition.

Conclusion

In this chapter, I present at least two important strategies for the researcher employing first-person methods: consistent variation within a context and consistent observation across (between) different contexts. We observe consistent variation in the experiments involving the Maltese cross, the Necker cube, the Müller-Lyer effect, and even the repeated traveling of the same route. In these instances I hold constant the context and investigate the variations that arise within it, by looking differently, by observing what is new each time that I engage in a particular set of actions, or by systematically varying an aspect of a given display. The second
strategy, consistent observation, was making observations about noticing things even though I might not have taken a route before or while taking a route in reverse. The point was not to do the trip over and over again but to take note of events that fall into a particular category. For example, in chapter 6 I describe the first-person method at work relating to memory, and memory became an important phenomenon that I investigated during that time at the Institute across a variety of very different contexts. In fact, in the preceding section of this chapter, there are traces of this inquiry relating to memory, as I describe the sense I had about having been on a particular bicycle trail before but remembering this only vaguely. I did not remember, however, that there was a fork in the trail heretofore shared by pedestrians and cyclists, which I had not been aware of the first time and only found out about during the second trip.

This chapter begins with the epigraph ‘Seeing is believing’. There are others – a simple Google search of the expression testifies to this – who turn this saying around to state ‘Believing is seeing’. In this second version, we can recognize a form of thought expressed in the Sapir-Whorf hypothesis that the language available to a person or people determines what they see. Apart from the fact that a lot of research provides little support for this hypothesis (e.g. Lakoff 1987), it also does not make sense on evolutionary grounds. The precursors of humans did not speak a language yet were perfectly adapted to their environments in perceptual terms. In this chapter, I describe methods for investigating a variety of perceptual phenomena. These methods do not take as their data the description of phenomena obtained from research participants, which would inherently mean that we limit our work to what language can express. Rather, our methods pursue the path of the pathic, investigating processes and movements that we are not normally conscious of and therefore subject and subjected to. Yet the investigation shows that there is a lot we may reveal about perception (a) under experimental conditions and (b) when observed in naturalistic contexts.

A corollary of this chapter is this: Even though I, the investigator, produce the data, the purpose of the first-person method is not to find out something about me, something utterly singular that describes only this one and no other person. The converse is true. In and through such forms of investigations, invariants are sought that describe (visual) perception as such.