Efforts to improve mathematics teaching and learning globally have led to the ever-increasing interest in searching for alternative and effective instructional approaches from others. Students from East Asia, such as China and Japan, have consistently outperformed their counterparts in the West. Yet, Bianshi Teaching (teaching with variation) practice, which has been commonly used in practice in China, has been hardly shared in the mathematics education community internationally. This book is devoted to theorizing the Chinese mathematical teaching practice, Bianshi teaching, that has demonstrated its effectiveness over half a century; examining its systematic use in classroom instruction, textbooks, and teacher professional development in China; and showcasing of the adaptation of the variation pedagogy in selected education systems including Israel, Japan, Sweden and the US. This book has made significant contributions to not only developing the theories on teaching and learning mathematics through variation, but also providing pathways to putting the variation theory into action in an international context.

“This book paints a richly detailed and elaborated picture of both teaching mathematics and learning to teach mathematics with variation. Teaching with variation and variation as a theory of learning are brought together to be theorized and exemplified through analysis of teaching in a wide variety of classrooms and targeting both the content and processes of mathematical thinking. Highly recommended.” – Kaye Stacey, Emeritus Professor of Mathematics Education, University of Melbourne, Australia

“Many teachers in England are excited by the concept of teaching with variation and devising variation exercises to support their pupils’ mastery of mathematics. However, fully understanding and becoming proficient in its use takes time. This book provides a valuable resource to deepen understanding through the experiences of other teachers shared within the book and the insightful reflections of those who have researched this important area.” – Debbie Morgan, Director for Primary Mathematics, National Centre for Excellence in the Teaching of Mathematics, United Kingdom
Teaching and Learning Mathematics through Variation
MATHEMATICS TEACHING AND LEARNING

Volume 2

Series Editor:
Yeping Li, Texas A&M University, College Station, USA

International Advisory Board:
Marja Van den Heuvel-Panhuizen, Utrecht University, The Netherlands
Eric J. Knuth, University of Wisconsin-Madison, USA
Suat Khoh Lim-Teo, National Institute of Education, Singapore
Carolyn A. Maher, Rutgers – The State University of New Jersey, USA
JeongSuk Pang, Korea National University of Education, South Korea
Nathalie Sinclair, Simon Fraser University, Canada
Kaye Stacey, University of Melbourne, Australia
Günter Törner, Universität Duisburg-Essen, Germany
Catherine P. Vistro-Yu, Ateneo de Manila University, The Philippines
Anne Watson, University of Oxford, UK

Mathematics Teaching and Learning is an international book series that aims to provide an important outlet for sharing the research, policy, and practice of mathematics education to promote the teaching and learning of mathematics at all school levels as well as teacher education around the world. The book series strives to address different aspects, forms, and stages in mathematics teaching and learning both in and out of classrooms, their interactions throughout the process of mathematics instruction and teacher education from various theoretical, historical, policy, psychological, socio-cultural, or cross-cultural perspectives. The series features books that are contributed by researchers, curriculum developers, teacher educators, and practitioners from different education systems.

For further information:
Teaching and Learning Mathematics through Variation

Confucian Heritage Meets Western Theories

Edited by

Rongjin Huang
Middle Tennessee State University, USA

and

Yeping Li
Texas A&M University, USA
Shanghai Normal University, China

SENSE PUBLISHERS
ROTTERDAM/BOSTON/TAIPEI
ADVANCE PRAISE FOR
TEACHING AND LEARNING MATHEMATICS
THROUGH VARIATION

“This book paints a richly detailed and elaborated picture of both teaching mathematics and learning to teach mathematics with variation. Teaching with variation and variation as a theory of learning are brought together to be theorized and exemplified through analysis of teaching in a wide variety of classrooms and targeting both the content and processes of mathematical thinking. Twenty diverse chapters from leading scholars provide a uniquely comprehensive view into this fundamental pillar of Chinese teaching, and demonstrate how the lens of variation reveals underlying connections between effective teaching practices around the world. Highly recommended.”
– Kaye Stacey, Emeritus Professor of Mathematics Education, University of Melbourne, Australia

“Many teachers in England are excited by the concept of teaching with variation and devising variation exercises to support their pupils’ mastery of mathematics. However, fully understanding and becoming proficient in its use takes time. This book provides a valuable resource to deepen understanding through the experiences of other teachers shared within the book and the insightful reflections of those who have researched this important area. Variation is central to a national programme to improve mathematics achievement in England and many teachers have asked the question “why didn’t I think of teaching like this before? It makes perfect sense!”
– Debbie Morgan, Director for Primary Mathematics, National Centre for Excellence in the Teaching of Mathematics, United Kingdom
TABLE OF CONTENTS

Foreword xi
 Jill Adler

Acknowledgements xv

Part I: Theoretical Perspectives

1. Introduction 3
 Rongjin Huang and Yeping Li

2. Theory and Development of Teaching through Variation in Mathematics in China 13
 Feishi Gu, Rongjin Huang and Lingyuan Gu

3. ‘Bianshi’ and the Variation Theory of Learning: Illustrating Two Frameworks of Variation and Invariance in the Teaching of Mathematics 43
 Ming Fai Pang, Jiansheng Bao and Wing Wah Ki

4. Variation in Tool-Based Mathematics Pedagogy: The Case of Dynamic Virtual Tool 69
 Allen Leung

5. Pedagogy of Variations: Synthesis of Various Notions of Variation Pedagogy 85
 Anne Watson

Part II: Variation as a Pedagogical Perspective for Classroom Instruction in China

Introduction 107
 John Mason

6. Characteristics of Teaching Mathematical Problem Solving in China: Analysis of a Lesson from the Perspective of Variation 111
 Aihui Peng, Jing Li, Bikai Nie and Yanjie Li

7. Teaching the Formula of Perfect Square through Bianshi Teaching 127
 Chunxia Qi, Ruilin Wang, Ida Ah Chee Mok and Danting Huang

8. Teaching Geometrical Concepts through Variation: A Case Study of a Shanghai Lesson 151
 Rongjin Huang and Frederick K. S. Leung
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Teaching Geometry Review Lesson through Variation: A Case Study</td>
<td>Xingfeng Huang, Xinrong Yang and Pingping Zhang</td>
<td>169</td>
</tr>
<tr>
<td>10</td>
<td>Teaching Algebra through Variations: Contrast, Generalization, Fusion, and Separation</td>
<td>Ida Ah Chee Mok</td>
<td>187</td>
</tr>
<tr>
<td></td>
<td>Part III: The Pedagogical Perspective of Variations as a Principle for Curriculum Development and Teacher Professional Development in China</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction: “The Lesson Plan is Only the Teacher’s Hypothesis of Students’ Learning”</td>
<td>Konrad Krainer</td>
<td>209</td>
</tr>
<tr>
<td>11</td>
<td>Strategies for Using Variation Tasks in Selected Mathematics Textbooks in China</td>
<td>Jianyue Zhang, Rong Wang, Rongjin Huang and Dovie Kimmins</td>
<td>213</td>
</tr>
<tr>
<td>12</td>
<td>An Expert Teacher’s Use of Teaching with Variation to Support a Junior Mathematics Teacher’s Professional Learning</td>
<td>Liping Ding, Keith Jones and Svein Arne Sikko</td>
<td>241</td>
</tr>
<tr>
<td>13</td>
<td>Teaching and Learning Mathematics through Variation in Lesson Study</td>
<td>Xue Han, Zikun Gong and Rongjin Huang</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>Part IV: Use of the Pedagogy of Variation Around the World</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction: Putting Variation Theory to Work</td>
<td>David Clarke</td>
<td>297</td>
</tr>
<tr>
<td>14</td>
<td>Improving Teaching through Variation: A Japanese Perspective</td>
<td>Keiko Hino</td>
<td>301</td>
</tr>
<tr>
<td>15</td>
<td>Developing Algebraic Reasoning through Variation in the U.S.</td>
<td>Angela T. Barlow, Kyle M. Prince, Alyson E. Lischka and Matthew D. Duncan</td>
<td>321</td>
</tr>
<tr>
<td>16</td>
<td>Using Variation of Multiplicity in Highlighting Critical Aspects of Multiple Solution Tasks and Modeling Tasks</td>
<td>Irit Peled and Roza Leikin</td>
<td>341</td>
</tr>
<tr>
<td>17</td>
<td>Learning to Teach with Variation: Experiences from Learning Study in Sweden</td>
<td>Ulla Runesson and Angelika Kullberg</td>
<td>355</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

Part V: Commentary and Conclusion

18. Teaching through Variation: An Asian Perspective – Is the Variation Theory of Learning Varying?
 Ngai-Ying Wong
 375

19. Teaching through Variation: A European Perspective
 Ference Marton and Johan Häggström
 389

20. Issues in Variation Theory and How It Could Inform Pedagogical Choices
 John Mason
 407

About the Authors
439

Subject Index
451
JILL ADLER

FOREWORD

In the recent past, I have included engagement with the notion of variation in the Masters course I teach focused on Teaching and Learning Algebra. Most of the students are practicing teachers. Their responses to the literature they read were interesting. For example, “this is common sense”, “this is what we do”, they said. They protested the need to theorize the idea, unconvinced of the value of making these ‘common sense’, ‘obvious’ elements of their teaching visible and explicit. Over time the course matured. At the same time, my own research describing and interpreting shifts in mathematics teaching in South African classrooms drew substantively on the notion of variation as significant for exemplification in mathematics pedagogy (Adler & Ronda, 2015, 2017b; Adler & Venkat, 2014). And the teachers, both Masters students and others I work with in our professional development project, have come to appreciate the worth of deliberate attention to what and how they exemplify mathematical ideas, processes, and practices in their teaching. They further appreciate how this critical work of teaching is strengthened by attention to “variation amidst invariance” (Watson & Mason, 2006), to “contrast” and “similarity” (Marton & Tsui, 2004), to building generality and appreciating underlying structure in mathematics. Deliberate attention to selecting and sequencing examples enables them to teach more coherently; or more ‘powerfully’ as some have said; and having a language with which to talk about these aspects of teaching ignites and supports collaborative practice.

It was thus with enthusiasm that I accepted the invitation to write the foreword for this book. I was delighted by the opportunity of being able to read all its chapters in advance of others, and to pre-view their contents.

In the introductory chapter, the editors, Rongjin Huang and Yeping Li, provide an overview of the book, how and why it emerged in this form, and what they as editors and chapter authors hope can be learned. Indeed, there are numerous places in the book with review and reflective comments. There are introductory comments prefacing each part of the book, and two reflective and review chapters in the last part. Therefore, I will not go down that path here, but rather focus on what has stood out for me as I traversed the various chapters and contributions, for it is in these that I see its value and encourage its wide and critical reading.

What stands out first is the profound respect for the complex work of mathematics teaching, and the teachers who carry out this work. The pioneering work of Lingyuan Gu in Gu, Huang, and Marton (2004) has inspired a number of
studies on mathematics teaching through principles of variation. And that is the key – it is mathematics teaching that is studied, and then described, so as to make visible and explicit what it is that this work entails. Of course what is taught is not synonymous with what is learned, but what is taught – made available to learn – is critical. The mostly Chinese, but also other teachers who are the ‘subjects’ of the studies reported in various chapters in the book, are the leading actors in the story of variation that is developed. In his introduction to Section III, Konrad Krainer notes this too, and describes the positioning of teachers in the chapters in that section as key ‘stakeholders’ in mathematics education research and practice. Teachers are key participants in developing knowledge and understanding of the learning and teaching of mathematics in school. There is much to learn across the chapters in this book, both from the ways in which research has been carried out on specific classroom practices, and the induction of new mathematics teachers – and so learning as both researcher and new teacher from experienced teachers and teaching.

This is not the first book that foregrounds mathematics teaching practices in China, and it will not be the last. Its uniqueness, in the words of the editors, is its foregrounding and focus on variation. This includes a meta analysis of a ‘pedagogy of variation’ as it emerged in China and was described initially by Gu; explorations of such pedagogy in algebra and geometry lessons, and different types of lessons (review, problem-solving), as well as textbooks and other curricula texts; and engagement with research and writings on how ideas and theories of variation have been used in mathematics education research elsewhere. Its broad goal is to advance systematic examination of the teaching and learning of mathematics across contexts, through variation.

And this leads to what stands out next for me in the book: the language that has been developed to describe a pedagogy of variation as it is used in China and then elsewhere. Elaboration of terms like Bianshi, the distinction made between conceptual variation and procedural variation, Pudian (scaffolding), and related concepts of anchoring knowledge, chains of knowledge, make it possible for readers to interpret and engage with the research on these practices, and then relate these to their own research and teaching. The stand out for me is (and perhaps this is a function of translation into English) is the similarity of word use in mathematics education research elsewhere. Yet, the use often has different nuanced meanings, provoking reflection on what we mean when we name constructs as we must do in furthering conversations about our work. Key chapters in this book tease out similarities and differences in approaches and theories using variation, making it further possible for readers to grapple too with systematic examination across contexts and uses.

I will focus here only on the distinction between conceptual and procedural variation, as these words (conceptual, procedural) abound in the literature in mathematics education, referring sometimes to knowledge, sometimes to understanding, and sometimes to proficiency. In my current lesson study work with teachers (see Adler & Ronda, 2017a), the first task in planning a research lesson is to decide on the ‘lesson goal.’ We also refer to this goal, following Marton et al
(op cit) as the ‘object of learning.’ We have found it useful and important to
distinguish whether the ‘object’ is a mathematical concept (e.g., the notion of
equality or the meaning of ‘solution’ or ‘solve’) or a mathematical procedure (e.g.,
algorithms or methods/strategies for finding the solution to an equation). Both
the notions of equality and solution, and the methods and strategies for solving
problems with equations are important in our curriculum, and introduced in the
early secondary years. Then, depending on what is intended to be in focus, the
examples, tasks, representations, and related meditational talk in the lesson would
need to differ substantively. The research reported in many chapters in this book
use the distinction between procedural and conceptual variation to analyze lessons
and what is made available to learn. As I interpreted and learned from these studies,
I appreciated the strong link here to pedagogic work: to elements, perhaps, of
pedagogic content knowing, to when and how to transform a figure and so make
available a new concept, to selecting a problem with multiple solution strategies,
and to selecting many problems calling on the same underlying strategy. For sure,
the use of ‘procedural’ here is in no way pejorative, without any relation to the
notion of rules without reasons (knowing how without why), it is in alignment with
procedural fluency in teaching as elaborated in Kilpatrick, Swafford, and Findell
(2001). Yet, I believe there is still work to do, across uses of these constructs, to
define more clearly what we mean when we use them, how we ‘see’ these in teaching
and learning mathematics practices, and how they work analytically.

My third take away, is the question ‘why now?’ Why is it that variation in pedagogy
is capturing attention now, or recapturing attention now? I first came across the
notion of ‘variation’ in the mid-1980s as a pre-service primary mathematics teacher
educator. I used Dienes’ (1973) perceptual variation productively in that work. It was
interesting to see the influence of Dienes’ work in the early research in China. Yet, as
I shifted my attention to language practices in multilingual mathematics classrooms,
and teachers’ knowledge and practice, ‘variation’ did not feature. A short answer
would be that my work lies within the social turn (Lerman, 2000), shaped also by
social justice interests away from the cognitive or perceptive. But this trivializes the
depth and breadth of Vygotskian theory. Yet it is now, some two decades later, that
the value of the notion of variation for research and practice is in focus. And it has
become important for a mathematics teacher professional development and research
project in a context of deep inequality and poverty in South Africa.

A tentative suggestion, and this is how the chapters in this book resonate for me,
is that variation is a productive metaphor/construct/tool (depending on how it is
used) in our work, as we become more attuned to the complex work of mathematics
teaching and the core practices of mathematics teaching within and across diverse
classroom contexts. Pedagogic variation is perhaps one such core practice. The
contribution of this book at this juncture is not only that it provides the field access
in English to an important strand of mathematics education research in China, but it
also positions this work in curriculum and pedagogy elsewhere – it offers a view and
stimulates further work into pedagogy of variation around the world.
J. ADLER

REFERENCES

Jill Adler
School of Education
University of the Witwatersrand
Johannesburg, South Africa
We would like to take this opportunity to thank our 45 contributors for their commitment and contribution. It has been a great learning and collaboration opportunity for everyone involved. Indeed, the chapters have been revised multiple rounds based peer reviews over the past two years. Our contributors have made great efforts to ensure the high quality of their chapters. We also want to thank external reviewers for their help in reading and commenting on the manuscripts. It would not be possible to have such a high quality collection of chapters without their constructive inputs. These reviewers include:

Afl Coles (Bristol University, UK);
Akihiko Takahashi (Depaul University, USA);
Andrzej Sokolowski (Lone Star College, USA)
Arthur B. Powell (Rutgers University Newark, USA)
Qian Chen (Sichuan Normal University, China);
Chunlian Jiang (University of Macau, Macao);
Glenda Anthony (Massey University, New Zealand);
Jeremy Strayer (Middle Tennessee State University, USA);
Ke Wang (Texas A&M University, USA)
Ko Po Yuk (Hong Kong institute of Education, Hong Kong);
Sarah K. Bleiler-Baxter (Middle Tennessee State University, USA)
Sasha Wang (Boise State University, USA)
Wenjun Li (Southern Illinois State University, USA);
Xianwei Y. Van Harpen (University of Wisconsin–Milwaukee, USA).

We are grateful to Middle Tennessee State University and Texas A&M University for various support during the process of editing and publishing the book. In particular, we thank a Faculty Research and Creative Activity Grant from Middle Tennessee State University for funding the publication of the book. Last, but not least, we extend our gratitude to Dr. Kyle Prince for his throughout and professional edits of the entire book manuscript and Mr. Michael Rugh for his assistance in proofreading book chapters.
PART I
THEORETICAL PERSPECTIVES
RONGJIN HUANG AND YEPING LI

1. INTRODUCTION

A PERSONAL JOURNEY TOWARD UNDERSTANDING
THE PEDAGOGY OF VARIATION

Both editors grew up in China and became high school mathematics teachers there. They learned about mathematics teaching in China not only as students, but also as teachers. *Bianshi* (i.e., changing or varying) teaching, or *Bianshi* exercise, viewed as a basic approach, has been used regularly in mathematics classroom instruction. Seeking multiple solutions to a problem, applying a mathematical method or strategy to solve a set of interconnected problems, and varying a problem into multiple problems are basic skills valued by all mathematics teachers in China. A variety of related books, journal articles, and teaching materials have been available for mathematics teachers to adapt such mathematics problems and methods in class. In 1990’s, *Bianshi* teaching, was clearly recognized and promoted as one of the most important teaching approaches nationwide due to Gu’s successful teaching experiment, which increased students’ mathematics achievement on a large scale in Qingpu County, Shanghai (Experimenting Group of Teaching Reform in maths in Qingpu, 1991). In his dissertation, Gu (1994) summarized four instructional principles including: emotional principle, accumulation step by step principle, activity principle, and feedback principle. To implement these principles, Gu (1994) further proposed different variation strategies for learning different types of mathematics knowledge such as concepts and facts, principles and theorems, and problem solving. He coined the strategies as concept-oriented variation and process-oriented variation.

As a graduate student at the University of Hong Kong in late 1990s, the first editor also had an opportunity to learn about the theory of variation, written by Marton and his colleagues (Marton & Booth, 1997; Marton, 2015). The theory presumes that learning is about developing new ways of seeing or experiencing the object of learning, it is necessary to experience certain patterns of variation and invariance in order to discern critical features of the object of learning. Teaching then means to construct appropriate spaces of variation (Marton & Booth, 1997). Pondering on the Chinese practice in mathematics instruction and Marton’s variation theory of learning in general, the first editor developed his initial desire to explore the characteristics of mathematics instruction in Shanghai and Hong Kong from the perspective of variation (Huang, 2002). Based on a fine-grained analysis of eight Hong Kong lesson videos from TIMSS 1999 Video Study and 11 Shanghai lesson videos, he
provided a new description of Chinese mathematics classroom instruction where the teacher emphasized exploring and constructing knowledge, provided exercise with systematic variation, and scaffolded students’ engagement in the process of learning (Huang & Leung, 2004). Building on Huang’s (2002) dissertation and Gu’s (1994) research, Gu, Huang and Marton (2004) further interpreted and theorized the Chinese Bianshi teaching practice in mathematics by building connections with Western theories, including Dienes’ theory (Dienes, 1973), Marton’s theory of variation of learning (Marton & Booth, 1997), notions of scaffoldings (Wood, Brunner, & Ross, 1976) and the concept of Vygotsky’s (1962) “Zone of proximal development” (Gu et al., 2004). They argued that Bianshi teaching is an effective way for promoting meaningful learning in large size classrooms.

The idea of developing this book grew directly from our previous publication on mathematics teaching in China (see, Li & Huang, 2013). As the previous book provided the first comprehensive account of how the Chinese teach mathematics and improve teaching, it has become clear to us that readers want to learn more about mathematics teaching in China. Existing research documented many important features of Chinese teachers’ practices, such as Teaching Research Group (e.g., Ma, 1999; Yang & Ricks, 2013), teaching contest (e.g., Li & Li, 2009), instructional coherence (e.g., Chen & Li, 2010), and teaching and learning through variation (e.g., Gu, Huang, & Marton, 2004). In the spirit of making a focused account of specific features one at a time, this book was designed to focus on teaching and learning mathematics through variation.

Clearly, the book differs from previously published books on mathematics teaching in China, as all contributors were asked to focus on this specific feature. The book is unique, as it provides readers with both comprehensive and in-depth accounts of this important feature practiced in mathematics classrooms in China.

The book also differs from many previous books through the inclusion of chapters that document similar practices in other education systems. The initial thought was to find out if similar practices were available in other education systems, and if so, provide a venue for us to learn about these practices from an international perspective. Such a thought was soon confirmed through our on-going work with mathematics teachers in the USA. We noticed that some teachers used mathematical tasks in their instructional designs and classroom instruction that reflected several principles of variation pedagogy, but they could not articulate the rationale for such tasks when asked. To examine U.S. teachers’ capacity in adapting variation pedagogy, a group of U.S. mathematics teachers was asked to implement a Chinese lesson plan that is designed according to Bianshi teaching principles. This exploratory study led to an exemplary lesson that implements mathematical practice effectively through using the patterns of variation (Huang, Prince, & Schmidt, 2014). Such an initial success also led us to believe that this effective teaching practice in China could be adapted in mathematics classroom teaching in other education systems. This book should be an important and valuable read for those who seek ways of improving their teaching practice in order to advance student learning.
WHAT THIS BOOK IS ABOUT

Improving the quality of mathematics teaching and learning has been the focus of mathematics education for years. One method has been to identify and examine specific approaches and practices that prove to be effective in high-achieving education systems, including China (e.g., Fan, Wang, Cai, & Li, 2004; Leung, 1995; Li & Huang, 2013; Stevenson & Lee, 1997; Stigler & Stevenson, 1991). Existing studies (e.g., Gu, Huang, & Marton, 2004; Wong, 2008) have documented that Bianshi (i.e. teaching with variation) is a commonly used and effective approach in mathematics teaching and learning in China. Meanwhile, researchers in the West have also emphasized the use of variation to improve mathematics teaching and learning, such as deliberately varying mathematical tasks to facilitate students’ learning of mathematics (Rowland, 2008; Watson & Mason, 2008). Specifically, Learning Study, a combination of lesson study and design experiment guided by Marton’s theory of variations for learning (e.g., Cheung & Wong, 2014; Lo & Marton, 2012; Marton & Pang, 2006), has demonstrated its potential importance in prompting students’ learning and participating teachers’ professional development. The use of pedagogy of variation seems to be effective for promoting students’ learning in mathematics in different contexts. However, there is a lack of systematic examination of the pedagogy of variation for learning, teaching and learning mathematics through variation in particular, which could go well beyond what we know has been valued in China. Possible questions that can be examined include: What are the theoretical foundations and interpretations of Bianshi teaching that has been proven to be effective in China? What are possible similarities and differences among various notions of teaching and learning mathematics through variation globally? How may a theory of teaching and learning mathematics through variation be related to curriculum development? How may such a theory be used in mathematics teacher preparation and teacher professional development? Are the notion of teaching and learning through variation culturally specific or universal? A systematic examination of these questions will not only help us better understand the characteristics of mathematics teaching in China, but it will also connect with what are perceived as effective practices in other education systems.

STRUCTURE OF THE BOOK

This book is organized into five parts to provide both general and specific accounts of teaching and learning through variation. The first part presents various notions about teaching and learning through variation (Gu, Huang, & Gu, 2017; Pang, Bao, & Ki, 2017), an extension of using variation in a dynamic learning environment (Leung, 2017), and a synthesis of the pedagogy of variation (Watson, 2017). The second part provides various examples about the pedagogy of variation that has been used to guide mathematics teaching in China. The vivid lesson cases include different topics such as algebra and geometry, which were enacted in different
types of lessons, such as the introduction of new concepts (Huang & Leung, 2017; Mok, 2017), exploration of new propositions (Qi, Wang, Mok, & Huang, 2011), problem solving (Peng, Li, Nie, & Li, 2017), and review of knowledge (Huang, Huang, & Zhang, 2017). The third part extends to other aspects that can contribute to the success of classroom instruction through variation, including textbooks (Zhang, Wang, Huang, & Kimmins, 2017) and teacher professional development approaches (Ding, Jones, & Sikko, 2017; Han, Gong, & Huang, 2017). The fourth part demonstrates how the pedagogy of variation has been widely used in mathematics teaching and task design in selected countries including Japan, Israel, Sweden, and the U.S. Finally, the fifth part contains three commentary chapters to provide specific accounts of the pedagogy of variation and its implications for mathematics instruction from different lenses such as East Asian perspective (Wong, 2017), European perspective (Marton & Häggström, 2017), and Western perspective (Mason, 2017). In addition to these chapters, each of parts 2–4 includes preface for readers as a guide for reading and reflecting upon that part. The preface for the entire book helps highlight some important ideas that the reader can attend to.

Collectively, the book provides a rich picture about what the theories of variation pedagogy look like and how the theories have been implemented in teaching various topics and lessons in China. In addition, a focus on the use of variation pedagogy in textbooks, novice teachers’ mentoring, and implementing innovative ideas of new curriculum through professional development programs at system levels may be crucial for implementation of the variation pedagogy in classrooms. Finally, the book provides evidence that the pedagogy of variation can be utilized in selected educational systems.

WHAT READERS CAN EXPECT TO LEARN

The reader may find that each chapter tells a story about the theory of variation pedagogy and its application in mathematics classroom instruction. Some big ideas can emerge when comparing and contrasting different chapters within and across parts. In this session, we attempt to highlight some of these big ideas.

What is variation pedagogy? Four chapters in Part I illustrate major notions of teaching and learning through variation. In Chapter 2, Gu et al. (2017) discuss the historical and cultural origin of Bianshi teaching (i.e., teaching with variation), describe experimental studies on synthesizing the concepts and mechanism of Bianshi teaching, present theorization of Bianshi teaching over the past decades, and report the latest attempts to develop the Bianshi teaching theory by incorporating western notion of learning trajectory. Pang et al. (2017) juxtapose and compare the major claims of Bianshi teaching and Variation Theory of Learning (Marton, 2015) through examining a mathematics lesson from the two theoretical lenses. They conclude that both theories appreciate the importance and necessity of experiencing certain patterns of variation and invariance for student learning. Although the
priorities of sameness and differences when constructing patterns of variation differ, they are complementary, and thus essential. Leung (2017) discusses how variation can be used as a pedagogical tool in the context of mathematics teaching and learning when a dynamic virtual tool is employed. He proposes a set of Principles of Acquiring Invariant that is complementary to the patterns of variation in Marton (2015)’s Theory of Variation of Learning and is further explored under a tool-based teaching and learning environment. Finally, Watson (2017), building on comparing various notions of variation, argues that the use of variation in mathematics teaching should draw on learners’ attention to “dependency relationships” that are invariant in mathematics, and illustrates how a careful use of variation can lead to abstraction of new ideas. The notion of “dependency relationships” echoes the notion of “core connection” articulated by Gu et al. (2017).

How can variation pedagogy be effectively implemented in mathematics classrooms? Part II includes five chapters demonstrating various examples in Chinese classrooms. Chapter 6 (Peng et al., 2017) focuses on the teaching of problem solving by examining a well-structured lesson on solving right triangles in contextual situations from the perspective of variation. Two major patterns of variation are used to develop student problem-solving ability and generalization. They are varying the conditions or contexts of the problems and seeking various methods of solving the problem. Chapter 7 (Qi et al., 2017) reports an experimental study on teaching an algebraic proposition guided by Bianshi teaching principles and features of student learning. Their data analysis revealed that a vibrant application of the Chinese pedagogy of variation in tandem with a mathematical thinking dimension enhanced student-learning outcomes. Chapter 8 (Huang & Leung, 2017) provides a fine-grained analysis of a geometry lesson based on Gu et al. (2004)’s framework. It reveals that the dimensions of conceptual variation focus on contrasting concept and non-concept images, and juxtaposing prototypical and non-prototypical figures, while dimensions of procedural variation demonstrate competence in setting and implementing deliberate tasks for students’ development of reconfiguration processing ability. Systemic use of variation could help students to develop conceptual understanding and problem-solving ability in geometry. Chapter 9 (Huang et al., 2017) discusses the challenges when an experienced teacher adopted procedural variation in a review lesson. Chapter 10 (Mok, 2017) examines algebraic lessons in Shanghai and Hong Kong from the perspectives of variation theory of learning. In the application of these ideas to learning experiences in lessons, discernment is made possible when variation of the critical aspects of the object of learning is embedded in the design of the instructional tasks or in the interaction between teacher and students and between students. This chapter illustrates key skills in creating useful patterns of variation in teaching and learning, including contrast, generalization, fusion, and separation.

How to support the implementation of variation pedagogy? Part III includes three chapters focusing on closely related aspects of implementing variation pedagogy.
In Chapter 11, Zhang et al. (2017) examine the features of variation in mathematics textbooks. Analyses of selected textbooks reveal that multiple strategies of presenting variation tasks are used to introduce concepts. Both conceptual and procedural variation tasks are used to develop mathematical concepts. To develop mathematics skills, the textbooks first present problem situations progressively with an increasing complexity. In addition, procedural variations are used to guide students to experience mathematical thinking methods through the process of concept development and problem solving. In Chapter 12 (Ding et al., 2017), the authors examine the dynamic between an expert teacher and a junior teacher within school-based teaching research activities. They found the expert teacher’s mentoring to be effective in two distinct ways: (1) the use of the commonly shared teaching notions to help the junior teacher understand the theoretical elements of teaching with variation; (2) the use of commonly shared teaching frameworks and language to help the junior teacher to understand the deliberate focus on the fundamental ‘chains’ in learning mathematics and the dynamic teaching process of Pudian (akin to ‘scaffolding’). The contribution of the study is that it expands knowledge of how teacher learning takes place through the support of an expert practitioner. Han et al. (2017), in Chapter 13, report a study on how a combination of theoretical perspectives informed lesson study, which helped the teachers, with the support from knowledgeable others, to shift their focus toward student learning. The data analysis further revealed that the students could get ample opportunities to experience critical aspects of object of learning when the teacher enacts appropriate dimensions of conceptual and procedural variations in the classroom and develops their conceptual understanding of the concepts.

Is the teaching through variation culture specific? Part IV includes four chapters demonstrating how variation pedagogy is utilized in selected countries in various ways. In Chapter 14, Hino (2017) carefully re-examines the well-documented Japanese structured problem solving approach from the perspective of variation. She identifies three types of variation embedded in the Japanese approach. Two lessons are used to illustrate these three patterns of variation: presenting problems with variation, providing opportunities for students to construct variation themselves, and promoting students’ reflection on variation toward the intended object of learning. This chapter highlights the importance of purposeful use of variation to promote students’ learning cross-culturally. Barlow et al. (2017), in Chapter 15, present a sequence of four-day lessons that aimed at developing students’ capacity of generalizing a pattern for the purpose of developing functional relationships. The development of the featured tasks was informed by a theory of variation. Data analysis suggests that these lessons promoted students’ algebraic reasoning aligned with the vision established in U.S. curriculum documents. In Chapter 16, Peled and Leikin (2017) extend a dimension of variation about the multiplicity of mathematics problems. Two types of mathematical problems are used to illustrate different purposes. One involves a “regular” problem that allows for multiple approaches.
to solving the problem. Another is modelling situations, where problem solvers are encouraged to interpret the situation from various perspectives and establish different models that lead to different solutions. The chapter opens a dialogue about the usefulness of each type of problem for different objects of learning. Runesson and Kullberg (2017), in Chapter 17, presents a longitudinal study in Sweden on learning study, which is a modified lesson study, enhanced by using variation pedagogy as an instructional design principle. Through iterative cycles of teaching and revising, the lesson on division with a denominator between zero and one has been improved to draw students’ attention to the intended object of learning. Moreover, Runesson and Kullberg attempt to address a crucial issue of sustainability of learning from the learning study by comparing a following up teaching of a different topic by the same teacher that did the learning study.

CONTRIBUTION AND FURTHER SUGGESTIONS

This book is designed to make important contributions in four ways. First, by inviting internationally well-known scholars who are interested in teaching and learning mathematics through variations to contribute their insights, we aim to build toward a solid foundation for theorizing this perspective. Second, a collection of chapters contributed by scholars in China provides lesson cases on the development and application of this pedagogy in teaching specific topics and lessons (e.g., concept, problem solving, exercise or review, etc.). Meanwhile, the factors influencing teachers’ utilization of variation pedagogy such as curriculum development and teacher professional development are explored. Third, some cases on adopting variation pedagogy in selected countries are presented. Fourth, commentary chapters on the original studies in the book from Eastern, Western, and European perspectives provide thoughtful insights into the theories of teaching and learning through variation and the application of these theories. Taken collectively, the book aims to theorize this pedagogical perspective and to provide cases showing how this pedagogical perspective can be used and implemented in mathematics teaching and learning, curriculum development, and teacher education.

Although the book has made important contribution to mathematics education as aforementioned, studies on the theories and application of variation pedagogy could be further developed in many ways. First, empirical studies on the effectiveness of implementing variation pedagogy to increase student achievement on a large scale should be conducted. Second, since effective implementation of variation pedagogy is related to curriculum and teacher professional development, developing relevant teaching materials based on variation pedagogy will be essential.

REFERENCES

Rongjin Huang
Department of Mathematics Sciences
Middle Tennessee State University, USA

Yeping Li
Department of Teaching, Learning and Culture
Texas A&M University, USA
Shanghai Normal University, China
2. THEORY AND DEVELOPMENT OF TEACHING THROUGH VARIATION IN MATHEMATICS IN CHINA

INTRODUCTION

Chinese students’ strong performance in mathematics in various international comparative studies has been noticed for decades (Fan & Zhu, 2004). In particular, Shanghai students’ outstanding performances in PISA (OECD, 2010, 2014) have stunned educators and policy makers around the world. Researchers have investigated Chinese students’ excellent performance in mathematics from different perspectives (Biggs & Watkins, 2001; Fan, Wang, Cai, & Li, 2004), including societal, sociocultural perspectives (Stevenson & Stigler, 1992; Sriraman et al., 2015; Wong, 2008), student behaviors (Fan et al., 2004), teacher knowledge, and teacher professional development perspectives (An, Kulum, & Wu, 2004; Fan, Wong, Cai, & Li, 2015; Huang, 2014; Ma, 1999), and classroom instruction perspectives (Huang & Leung, 2004; Leung, 1995, 2005; Li & Huang, 2013).

A close examination of mathematics instruction in China may help better understand why Chinese students can succeed in large class-size classrooms. Typically, Chinese mathematics classrooms have been described as large and teacher dominated, with students who are well disciplined, passive learners (Leung, 2005; Stevenson & Lee, 1995). Classroom teaching in China is polished (Paine, 1990), fluent and coherent (Chen & Li, 2010; Wang & Murphy, 2004), with a focus on the development of important content, problem solving, and proof (Huang & Leung, 2004; Huang, Mok, & Leung, 2006; Leung, 2005). Furthermore, from a cultural and historical perspective, Chinese mathematics instruction has been identified with two fundamental characteristics: (1) two-basics-oriented (basic knowledge and basic skills) teaching, and (2) direct explanation and extensive practices with variation (Li, Li, & Zhang, 2015; Shao, Fan, Huang, Ding, & Li, 2013). Particularly, Gu, Huang and Marton (2004) theorized teaching through variation and argued that teaching through variation is an effective way to promote meaningful learning in mathematics for classes of large size. In this chapter the authors further examine the practice of teaching through variation from a cultural perspective and provide state-of-the-art studies on teaching through variation in China. Finally, the authors discuss how teaching through variation can be implemented to promote deep learning of mathematics in classrooms.
TEACHING THROUGH VARIATION: A CULTURALLY INDIGENOUS PRACTICES

Teaching and learning mathematics through variation is a widespread idea in China as reflected in the old Chinese maxim, “Only by comparing can one distinguish” (有比较才有鉴别). There are different opinions about using variation in mathematics education. Some focus on using problems with variation in textbooks or curriculum (Cai & Nie, 2007; Sun, 2011; Wong, Lam, Sun, & Chan, 2009) while others emphasize using tasks with variation in classrooms for promoting student learning (Gu et al., 2004; Huang & Leung, 2004, 2005). Teaching through variation in this chapter is aligned with the following definition:

To illustrate essential features of a concept by demonstrating various visual materials and instances, or to highlight essential characteristics of a concept by varying non-essential features. The goal of using variation is to help students understand the essential features of a concept by differentiating them from non-essential features and further develop a scientific concept. (Gu, 1999, p. 186)

In her study, Sun (2011) argued that the concept of conducting a lesson or practice with variation problems is an “indigenous” feature in China. First, the major traditional philosophical systems such as Confucianism (儒家) imply the variation notion. For example, Confucius said, “I do not open up the truth to one who is not eager to get knowledge, nor help out any one who is not anxious to explain himself. When I have presented one corner of a subject to any one, and he cannot from it learn the other three, I do not repeat my lesson.” (The Analects, 7: 8) (举一隅不以三隅反, 则不复也) This principle emphasizes the importance of self-motivated inquiry for understanding invariant patterns within different situations. Second, many ancient Chinese mathematics treatises such as *Nine Chapter of Arithmetic Arts* 《九章算术》 have been organized in a similar structure: concrete examples (stereotype problem) – invariant methods – application (variation problems). In this way, the invariant principles (general methods) were developed through the exploration of the variation of concrete examples and further consolidated by application in a variety of novel problems.

When discussing learning and teaching mathematics, ancient mathematicians also emphasized heuristic strategies through making use of variation. For example, in *Shuan Fa Tong Bian Ben Mo* 《算法通变本末》, Yanghui (杨辉, no details) pointed out that “good learners can grasp the whole category from typical examples; they don’t need to teach them all in detail” (Song, 2006). It means that teachers should adopt analyzing typical cases or instances, illustration with diagrams, and drawing inferences about other cases from one instance to help learners to broaden their knowledge from concrete instances. Another example, in *Zhoubi Suanjing* 《周髀算经》, a classic mathematics treatise, the following conversation between the teacher (Chenzi) and a student (Rongfang) revealed the teaching philosophy:
Rongfang: I do not master the Dao (way). Can you teach me?
Chenzi: [...] Now in the methods of the Way [that I teach], illuminating knowledge of categories [is shown] when words are simple but their application is wide-ranging. When you ask about one category and are thus able to comprehend a myriad matters, I call that understanding the Dao. Now, what you are studying is the methods of reckoning (the principles of learning mathematics), and this is what you are using your understanding for. [...] So similar methods are studied comparatively, and similar problems are comparatively considered. This is what sorts the stupid scholar from the clever one, and the worthy from the worthless. So, being able to categorize in order to unite categories—this is the substance of how the worthy will devote themselves to refining practice and understanding (Cullen, 1996, pp. 175–178, cited from Sun (2011)).

The above discussions about learning mathematics focus on using concrete examples to make sense of a category (a concept), grasping ways (generalization) across categories, and developing a hierarchical system of categories. All of these ideas reflect the key notion of using variation problems in learning mathematics.

In addition to the aforementioned traditional cultural values, ancient mathematics treatises and the strategies of mathematics learning, a civil service examination system associated with “educational attainment, career goals, social status, and political ambitions” (Li, Li, & Zhang, 2015, p. 72) has been established since Qin Dynasty (605–1905) in China. In modern China, mathematics examinations exist at all grade levels. In particular, the entrance examination for high schools and colleges are high-stakes and competitive. The high-stakes examination system has contributed to the origin of forming two-basics–oriented mathematics teaching, supported with teaching through variation (Li et al., 2015). Since mathematics teaching and examination focus on basic knowledge and skills that are defined by curriculum standards and the two “basics” are relatively invariant, the exam items have to be designed differently every time, although they have to adhere to standards and textbooks. So, examination items have to be created based on prototype problems in textbooks with varying forms (i.e., many variations while maintaining the same essence, 万变不离其宗). Thus, practices with variation problems surrounding standards and textbooks have been proved in practice to be an effective way to prepare students to succeed in their examinations (i.e., practice makes perfect, 熟练生巧) (Li, 1999).

In addition to the traces of the roots in the ancient Chinese philosophy and mathematics treatises, teaching through variation has been promoted by the examination-oriented education system. Teaching through variation exists in many places without individuals’ purposeful awareness.
Teaching and learning through variation problems has been practiced for centuries in China. Yet, the practice has only been examined empirically over the last three decades. Gu and his colleagues have explored how to use and theorize teaching through variation (e.g., Bianshi Teaching 变式教学) to increase student achievement in mathematics since the 1980s (Bao, Huang, Yi, & Gu, 2003a,b,c; Gu, 1981, 1994; Gu et al., 2004; Qingpu experiment group, 1991). This section describes the major concepts of teaching through variation. First, the authors introduce two essentially different types of variation in mathematics classroom teaching: conceptual variation and procedural variation, based on effective teaching experiences (Gu, 1981). Then, a key concept of potential distance featuring the procedural variation based on empirical studies is discussed (Gu, 1994).

Conceptual Variation

Conceptual variation refers to the strategies that are used to discern essential features of a concept and to experience connotation of the concept by exploring varying embodiments of the concept (i.e., instances, contexts) (Gu et al., 2004). It aims to help students develop a profound understanding of a concept from multiple perspectives. The sections that follow illustrate the critical features of conceptual variation.

Highlighting essential features through variations and comparisons. Students’ learning of geometrical concepts is closely related to the following major factors: experience with visual figures that represent the concept and verbal description of the concept. Previous teaching experience in geometrical concepts in middle schools demonstrates that directly defining a concept by describing essential features of the concept may help students memorize the concept. For example, the concept of altitudes of a triangle includes two critical features: perpendicular to one side and passing through the vertex at the intersection of the other two sides. However, the observation and experiment in Qingpu (Gu, 1994) revealed that if a teacher only told students the definition precisely and asked students to memorize the definition, then students were likely to have superficial and rigid understanding. Yet, if a teacher provided opportunities for students to observe and compare deliberately designed variation concept figures such as standard or non-standard position figures, or counterexamples, and then highlighted the essential features of the concept, students are more likely to synthesize the critical features of a concept based on observation of concrete instances. One example of variation figures used for developing the concept of altitude of a triangle is shown in Figure 1.

As shown in Figure 1, a standard figure is used to introduce the concept of altitudes of a triangle that is aligned with daily life experience. But the concept of altitudes in geometry is not equivalent to the perceived meaning of daily life
experience. Thus, identifying altitudes in various triangles (positions and types of triangles) helps students abstract the essential features of the concept. Finally, by contrasting some common misconception figures, the critical features of altitude: “perpendicular to a side and passing through the opposite vertex of the side” are further consolidated.

Eliminating the distraction of complex background through transformation and reconfiguration of basic figures. Geometrical figures usually consist of combinations of basic figures through separation, overlapping, and intersection. Sometimes basic figures are embedded in complex situations. The complex background figures often distract, distort, and mask students’ perception of embedded basic figures. Thus, essential features of a geometrical concept embedded in complex backgrounds are often hidden and difficult to identify or even subject to being perceived inappropriately. To address this learning difficulty, a traditional strategy was to purposefully isolate geometrical objects explicitly (such as using colors) from complex background figures (including real contexts), which has been proven in practice to be effective. However, the experiment in Qingpu (Gu, 1994) demonstrated that such a strategy might resolve the problem that inappropriate perception of figures constrains appropriate recognition of a geometrical concept. How logical reasoning activities may influence the comprehension of a complex figure is an important issue. These strategies include: analyzing the structure of complex figures or generating a complex figure through transformation (i.e., translation, rotation, reflection, and shrinking and expanding) of basic figures. Through these decompositions and compositions, the focused figures can be separated from complex background figures (See Gu et al., 2004 for details).

Examining the effectiveness of using these variations through quasi-experiments. Since 1980, the Qingpu experiment team has examined the
effectiveness of these variation strategies through “identifying effective methods based on implementation”, a Chinese version of “design-experiment” (Brown, 1992); repeated within a short period (once a week), which includes an entire cycle of planning – implementation – evaluation – improvement. The effectiveness of these variation strategies has been testified through more than 50 cycles of studies within one year. In particular, quasi-experiment methods (numbers of students in experimental class and control class are similar) were adopted. The experimental studies aimed to examine the effectiveness of using variation strategies. The results of one experiment are discussed below.

In the first experiment, the instructional content is the concept of perpendicular lines. The experimental group is class A (50 students); the concept of perpendicular lines was briefly explained, and then students were provided a set of variation practices. After that, students’ errors were identified and discussed based on essential features of the concept. The control group is class B (51 students); the concept (definition of perpendicular lines) was repeatedly explained to students based on textbooks, then simple and repeated problems were provided for students to practice. After the class, a post-lesson evaluation test was conducted. To answer to the question, “What is the distance from a point to a straight line?”, the students from the control class mainly recited the definition from the textbook, yet the students from the experimental class explained the definition based on their understanding. The average correct rates on a basic problem of constructing a perpendicular line in both groups were about 70%. However, with the answers to non-routine problems (constructing a perpendicular line in non-standard position triangles, see below), there were significant differences between the two classes as follows:

Item 1, in the figure (on the right), asked students to construct a line DE containing D and perpendicular to AD. There was a significant difference ($t = 2.13, p < .05$) between experimental class A (mean = 5.80 (out of 10 points)) and control class B (mean = 4.76).

Item 2, in the figure (on the right), asked students to construct the distance segments from B or C to line AD respectively. There was a significant difference ($t = 4.91, p < .01$) between experimental class A (mean = 6.04) and control class B (mean = 3.97).

Thus, this study revealed that teaching through deliberate variation problems appears to be more effective than teaching through repeated explanations of a definition.

The second experiment was conducted one month later. The instructional content was the SAS Postulate (Side-Angle-Side): If two sides and the included angle of one triangle are congruent to the corresponding parts of another triangle, then the triangles are congruent. The teaching strategy was swapped: class B was the experimental group and class A was the control group. In experimental class B, the theorem of SAS was briefly explained to students, and then variation problems
(with variation figures) were provided for students to practice on. After that, students’ errors were discussed and corrected, with particular attention to identifying hidden conditions within a complex figure or context. In the control class A, the teacher explained the theorem (SAS), students restated the theorem, and then students were given several variation problems (without figures, which consist of overlapping or separating basic figures) to practice on. A post-lesson test showed that the answers to two slight variation problems had mixed results; the means in the experimental class were 85% and 67% while those in the control class were 79% and 70%. However, the answers to another two proof problems that included complex variations showed significant difference between the two classes as follows:

Item 3: in the figures (on the right), \(AE = BE, \ CE = DE, \angle 1 = \angle 2\). Prove \(AD = BC\). There was a significant difference \((t = 3.18, p < .01)\) between experimental class B (mean = 8.66) and control class A (mean = 7.12).

Item 4: In the figure (on the right), \(\Delta ABC \cong \Delta BDE\) are equilateral triangles. Prove: \(\Delta BCD \cong \Delta BAE\).

There was a significant difference \((t = 2.11, p < .05)\) between experimental class B (mean = 5.21) and control class A (mean = 3.50).

On item 3, students had to recognize the symmetrical structure of \(\Delta ADE\) and \(\Delta BCE\). On item 4, the students had to recognize that \(\Delta BAE\) is rotated left 60˚ from \(\Delta BCD\). These results show the effectiveness of using variation figures to help students identify target figures from a complex background figure.

In summary, the experimental studies in Qingpu (Gu, 1994) demonstrated that (1) designing variation problems based on essential features of a concept, and comparing and contrasting concept images and non-concept images could help students clarify connotations and extensions of a concept; and (2) reconfiguring the structure of a complex figure and forming a figure through transformation of basic figures could help students reduce cognitive load and promote their understanding of a concept in depth. Use of these strategies in teaching in a large class could promote more active learning.

Procedural Variation

Mathematical concepts are defined clearly and statically. Yet, obtaining mathematical activity experience and understanding of mathematical thinking methods are a dynamic process. Gu (1981) explored another variation, known as procedural variation. Procedural variation refers to creating variation problems or situations for students to explore in order to find solutions to problems or develop connections among different concepts step by step or from multiple approaches. Based on extensive teaching experience and reflection, Gu (1994) synthesized two critical features of procedural variation as follows (see Gu et al., 2004 for details).
Solving problems through transferring figures. Transferring is one of most important methods of solving problems in mathematics instruction in China. It means to break down a complex problem into simpler problems. The simpler problems provide the foundation for solving the original complex problem. Or reversely, based on a basic problem, through adding constraints, complicated problems can be created. Figure 2 is an example of how transferring methods could help prove a geometrical theorem.

Figure 2 shows how the mid-point quadrilateral that connects four midpoints of a quadrilateral is a parallelogram can be proven based on a simple “anchoring property”, which states that the mid-segment of triangle (connecting two midpoints) is parallel and equal to half of the third side.

Building connections among different types of knowledge through categorization and building a hierarchical system of categories. Categorization is an important mathematical thinking method. The key is to ensure that a categorization includes all instances without missing and overlapping. For example, the categorizations of triangles, the categorizations of special quadrilaterals, and the categorization of angles in a circle are typical examples of categorization activities. Another important issue is to build connections among various concepts and various concept figures, and to clarify logical relationships between different concepts. Figure 3 is a typical example of a concept map of angles in circles.

In Figure 3, there are three situations of inscribed angles in circles: the center of the circle is on one chord, between the two chords, or outside the two chords. In addition, there are: relevant angles formed between a tangent and a chord, angles formed inside of a circle by two intersecting chords, and angles formed outside of a circle by two intersecting tangents, two secants, or a tangent and a secant. However, Figure 3, which was presented by a teacher in a unit review lesson, presents the relationships among different angles clearly by adding critical auxiliary lines, both connecting relevant concepts and consolidating these concepts.
Illustration of procedural variation with the analysis of an exemplary lesson. Procedural variation relates to different mathematical thinking, either converging transformation or diverging transformation. Procedural variation is also derived from a prototypical problem, or combination and transformation of representations, or re-recognition or discovering, and so on. Different ways of thinking and multiple representations when creating procedural variations are beyond being dealt with by any conceptual variation. However, making a problem more difficult and complex through extensively varying problems is contrary to the goals of teaching through variation. Varying problems must serve for instruction processes and purposes. In addition to the quantitative results shown previously, we illustrate how to appropriately use variation problems by analyzing an exemplary lesson developed during the Qingpu experiment. The lesson focused on the theorem for determining isosceles triangles. Here, we just describe two segments of the lesson.

Segment 1: Multiple constructions and multiple proofs. In Figure 4: in an isosceles triangle, given the base BC and the angle \(\angle B \) formed by a leg and the base, construct the isosceles triangle.

Students provided a variety of constructing methods. Some constructed \(\angle C = \angle B \) and extended the sides of the angles so that they intersect at A. Some constructed
the perpendicular bisector of base BC and intersect one leg at A. In addition, some students folded BC in half and found the vertex A and constructed the triangle. Based on the constructions of a triangle, the determining theorem of isosceles could be discovered: In \(\triangle ABC\), if \(\angle B = \angle C\), then \(AB = AC\). Different proofs of this theorem could be found based on the construction of the figure. For example, the altitude of base BC can be constructed, or the bisector of angle A can be constructed, then prove \(\triangle ABD \cong \triangle ACD\); then, \(AB = AC\) can be obtained based on the properties of congruent triangles. In addition, students are encouraged to find various proofs: for example, if \(AB > (or <) AC\), then \(\angle B > (or <) \angle C\) based on the property that in a triangle, the longer sides correspond to bigger angles. This is contradictory to the given of \(\angle B = \angle C\). So, it is impossible that \(AB \neq AC\). This is \textit{Reductio ad absurdum} (indirect reasoning). Moreover, if \(\triangle ABC\) and \(\triangle ACB\) are regarded as two overlapping triangles, then, because \(\angle B = \angle C\), \(\angle C = \angle B\), and \(BC = CB\); thus, the two triangles are congruent (e.g., ASA) and therefore \(AB = AC\). Based on different ways of constructing the figure, varying proofs were derived which are complementary to a single proof.

\textit{Segment 2}: Varying the problems hierarchically. Based on previous teaching experience, exploration of multiple solutions to a problem and a set of problems which could be solved by the same method, should be better than seeking a solution to a problem regarding promoting students’ flexibility and profoundness of mathematical thinking (Cai & Nie, 2007). However, the Qingpu experiment (Gu, 1994) indicated that exploring hierarchical-progressive variation problems could achieve a much better effect on student learning. The following is an exemplar for illustrating the feature of hierarchical-progressive variation problems. The initial problem is simple: In Figure 5(1), the bisectors of two base angles of an isosceles triangle \(\triangle ABC\) intersect at D, determine whether the \(\triangle DBC\) is an isosceles triangle.

The answer to the first problem (Figure 5(1)) is obvious. It aims to help students understand how to use judgment theorem and property theorem of isosceles triangles that are the basic knowledge of the content. In Figure 5(2), a segment EF passing through D is parallel to BC (EF\parallel BC). Students were asked to find all isosceles
triangles in the figure. \(\Delta DBC \) and \(\Delta AEF \) are obviously isosceles triangles, which is easy to prove. Then, students should focus on determining whether \(\Delta EDB \) and \(\Delta FDC \) are isosceles triangles. If they are, prove that they must be. In this case, students have to use judgment theorem and identify the common relationships among the bisectors of an angle, parallel lines, and isosceles triangles. Immediately, students were asked to create their own problems based on the relationships and solve them by themselves. Students found the following results: D is the middle point of EF; EF = EB + FC and so on. This procedural variation was used to pose and explore subsequent challenging problems. In Figure 5(3), \(\Delta ABC \) is not an isosceles triangle, but the bisectors of the base angles and parallel lines remain. Students are asked to individually think: among the statements posed in the previous problem, which ones are still tenable and which ones may be not true? This is a relatively complex problem. Repeated experiments showed that about 80% of the students who had experience with hierarchical-progressive variation problems could solve the complex problem, while only about 20% of the students who did not experience this process could solve the problem. Although, all students had similar academic backgrounds at preliminary stage of learning geometry.

In summary, the authors came to the following conclusions: (1) during mathematical activities, careful dealing with hierarchical levels of transferring from a related basic problem to a higher cognitive demand problem, and practicing with relevantly hierarchical-progressive variation problems could advance students’ capacity in solving problems step by step; (2) synthesizing common experiences and features during different hierarchical-progressive variation processes, and classifying and connecting these relevant variations could promote students’ development of hierarchical and systemic experiences. These strategies have evolved based on a great amount of effective teaching experiences. Actually, dynamic mathematics activities include an important characteristic, namely, the progression of knowledge and skills. This progression could be represented in the forms of hierarchical levels of knowledge or a series of strategies for, or experiences in, doing mathematics activities. Certainly, teaching through hierarchical-progressive variation problems is not the same as rote practice.

Figure 5. Hierarchical-progressive variation problems
Mechanism of Procedural Variation

To understand the principles and mechanisms of procedural variation, the Qingpu experiment group (Gu, 1994) conducted a series of studies on student mathematical thinking processes between 1987 and 1988. These studies focused on psychological characteristics of learning through variation and describing progression of knowledge development and essential connections between what students have and what they are supposed to learn. The sections that follow describe the major findings of those studies (Gu, 1994) based on original data analysis (see Gu et al., 2004 for additional examples).

Anchoring knowledge point and new problems. Students’ existing knowledge structure is the key factor influencing students’ learning of new knowledge. The anchoring knowledge point is critical for the success of exploration of a new problem (Ausubel, 1978). Anchoring knowledge point refers to the previous knowledge point that underpins learning of the new knowledge.

There were 180 middle school students participating in this experiment. Seventh, eighth, and ninth grade students occupied one-third of the participants equally; male and female averaged half; and the ratio among high, average, and low achieving students is 3:4:3. Using stratified samplings, 60 students participated in the experiment: teaching through variation; another 60 students participated in dissemination of the experiment; yet another 60 students participated in a control group: direct teaching the concept. Activity cards are used as a research tool. One example is shown in Figure 6. There were 6 groups of 5 items, 30 items in total. Groups 1, 3, and 5 included items that can be solved based on visual perceptions (constructing figures based on given data and then making judgments based on visual perceptions) while groups 2, 4, and 6 included items that can be solved based on logical reasoning (Making conjectures based on the given and providing justification).

Regarding the problem in Figure 6, the anchoring knowledge point of students of different grade levels were different and therefore, the knowledge distance between the problem and anchoring knowledge point of different grade levels was different. Seventh graders knew about segment diagrams, but had the largest knowledge distance; eighth graders knew about translations of figures (such as two triangles) and had a shorter knowledge distance; and ninth graders knew about the relationship between a line and a circle and had the shortest knowledge distance. The test results showed that the correct rate of students increased as the knowledge distance decreases. This finding reveals that learning new knowledge or solving new problems not only relies on the anchoring knowledge point but also relies on the knowledge distance. This finding also indicates the mechanism of teaching and learning with progression and provides implications for teaching through progressive variation problems.

In addition, students could develop their mathematics cognition as they grow up across grades; how might the cognitive maturity influence students’ ability in
exploring a novel problem? To address this concern, another problem was posed: exploration of Pick’s theorem was given to students of three grades (e.g., seventh, eighth, and ninth). The theorem is expressed as follows:

Given a simple polygon constructed on a grid of equal-distanced points (i.e., points with integer coordinates) such that all the polygon’s vertices are grid points, Pick’s theorem provides a simple formula for calculating the area A of this polygon in terms of the number N of lattice points in the interior located in the polygon and the number L of lattice points on the boundary placed on the polygon’s perimeter:

$$A = N + \frac{L}{2} - 1$$

Although this theorem is totally new to all students, the knowledge needed for exploring this theorem is basic: area of triangle and counting, making the anchoring knowledge point quite similar for students in all grades. Thus, the knowledge distance is quite comparable as well. The incorrect rates (vertical axis) of solving these two problems across grades are displayed in Figure 7.

In Figure 7, the dash-line reveals that, even with the similar anchoring knowledge point for all students in all grades, the correct rate increased as the grade increased; this implies students’ mathematical cognition maturity matters. The bold-line
indicates that with different anchoring knowledge point, the correct rate increased tremendously as the grade increased. The gains of correct rate of the two problems across grades are obviously different. This difference may reflect the co-impact of mathematical knowledge distance and cognitive level maturity. The “potential distance” between anchoring knowledge point and a new problem is determined by two factors: mathematical knowledge distance between anchoring knowledge point and the new problem, and cognitive maturity.

Measurability of potential distance. As discussed previously, both the anchoring knowledge point and new problems are related to mathematical content. Thus, the potential distance could be measured through designing appropriate instruments (e.g., mathematical problems) and analyzing test results quantitatively. For instance, in the aforementioned examples (in Figure 7), the potential distance could be indicated by incorrect rate when exploring new knowledge or new problems. The lower the incorrect rate, the lower the potential distance. This is a kind of primary characterization/representation. Of course, further studies could be done through testing different content topics with larger samples and conducting advanced psychometric analysis to build standardized norms. Thus, potential distance is measurable, although more studies are needed in the area.

Differentiation of potential distance. The potential distance between anchoring knowledge point and a new problem could influence the difficulties and achievements of students’ exploration of the problem. If the potential distance between new knowledge and anchoring knowledge point is shorter (short distance
connection), it is easy for students to understand and master the new knowledge. If the potential distance is longer (long distance connection), the problem can support the development of students’ exploratory ability. A teacher could adopt different orientations of instruction: direct, exploratory, or combination according to different potential distances and learning goals.

RECENT STUDIES ON PROCEDURAL VARIATION: CORE CONNECTION AND LEARNING TRAJECTORY

In addition to the definition and features of potential distance described in the previous section, it was noticed that when the potential distance is too long, a majority of students have difficulties in approaching the new knowledge, which we conjectured was due to heavy cognitive load (Gu, 1994). The key questions that need to be addressed include: how can teachers help students build bridges between anchoring knowledge point and new knowledge? How can teachers provide effective scaffolding activities? How can teachers use variation problems to shorten the potential distance, if possible? A second analysis of data taken from the Qingpu experiment (Gu, 1994) reveals partial answers to these questions. The major findings include identifying core connection and setting appropriate Pudian (i.e., scaffoldings). In addition, based on an attempt to incorporate the western notion of learning trajectory (Simon, 1995) with teaching through variation in Chinese mathematics classroom, it was found that the teaching guided by the combination of learning trajectory and teaching through variation could promote students’ understanding of concepts.

Concept of Core Connection

In the Qingpu experiment (Gu, 1994), the teachers in the experiment group had emphasized the integration of numerical and geometrical representations, and invariant features within varying transformations after seventh grade. For instance, in the experimental class, the students were introduced to analyzing the positional relationship between two segments on a line using “segment diagrams” in algebraic lessons as shown in Figure 8.

![Figure 8. Positional relationships between two segments on a line](image)
In Figure 8, a truck is shown travelling toward a bridge from East to West. The length of the bridge is a, the length of the truck is b, and the distance between the West end of the bridge and the front of the truck is d. To explore the quantitative relationship among d, a, and b, students need to determine the following relationships between the truck and the bridge: (1) when is the truck not on the bridge? (2) When is a portion of the truck driving on the bridge? (3) When is the truck entirely on the bridge? If students understand these problems clearly, then they can answer the relationship between two circles successfully (see Figure 6). Seventh graders know about segment diagrams and can apply the above process of variation problems to explore relationship between two circles. The longer potential distance of the seventh graders could be shortened greatly. Actually, the positional relationship of two circles can be transferred into the positional relationship between two segments (i.e., the distance between two centers of circles, radii). If students understand the positional relationship between two segments, then, they can easily grasp the positional relationship between two circles. It is critical to find the most essential and transferable connections between the anchoring knowledge point and the new problem. We define this type of crucial connection as "core connection." Teaching through variation based on "core connection" could result in two unique effects.

Effects of Using Core Connection

The experiment data shows that there are important effects of using core connection. First, it could shorten the distance between anchoring knowledge point and a new problem. Second, it could mature cognitive thinking and advance thinking levels.

Shortening potential distance. Based on the experiment of potential distance, a deep analysis of the data shows that using core connection could shorten potential distance. Students’ explorations of the five relationships between two circles between the experimental group and the control group (around 50 students) were examined and compared. In the experimental group, the teacher emphasized core connection by exploring problems with a truck and a bridge (Figure 8). Figure 9 shows students’ correct rates in exploring these relationships in the experimental and control group in seventh grade, and control groups in seventh and eighth grades. The results indicated that students’ correct rates from the experimental group was much higher than the control groups in seventh grade, and even higher than the control groups in eighth and ninth grades. These results imply that the use of core connection could shorten the potential distance significantly, and reduce the students’ cognitive load.

Advancing thinking ability. Two types of test items, visual judgment and abstract logical reasoning, are used to examine the correlations between different mathematical thinking levels. The correlations between visual judgment and abstract logical reasoning in seventh, eighth, and ninth grades respectively are 0.390, 0.686, and 0.696. The data appears to imply that seventh grade is a transformative period.
from visual to logical reasoning. The scatterplots in Figure 10 further illustrate that students from the experimental group in seventh grade moved toward logical reasoning levels from visual perceptions. This means the transformation from visual judgment to logical reasoning occurred one year earlier (from eighth grade to seventh grade). Thus, variation problem focusing on core connection could promote students’ transformation from visual judgment to logical reasoning significantly.

Figure 9. Correct rates of exploring new problems across different groups

Figure 10. Scatterplots of students’ thinking tests in seventh grade

Instructional Pudian

Building on the concept of core connection and its importance in procedural variation, this section further discusses another closely related concept of “Pudian”
According to Gu et al. (2004), *Pudian* is commonly used in Chinese classroom teaching, which is metaphorically described as “by putting blocks or stones together as a *Pudian*, a person can pick fruit from a tree which cannot be reached without the *Pudian*” (p. 340). Similar to the notion of scaffolding in the West (Wood, 1976), by establishing “*Pudian*”, the students can complete the tasks that cannot be done without the “*Pudian*.” In contrast, the *Pudian* emphasizes “the process and hierarchy” of learning (Gu et al., 2004, p. 340). In classroom instruction, *Pudian* could be appropriately applied to instructional design and implementation as follows: Teachers and students move from their existing knowledge and cognitive level toward obtaining new knowledge and solving new problems through effective instructional design (or *Pudian*). The segment diagram in Figure 8 is an appropriate example of how *Pudian* can help students move from existing knowledge toward exploring positional relationships between two circles.

There are multiple strategies to help students move toward higher levels of learning. By utilizing the terminology of scaffolding in the West (*Pudian*, in China), it is crucial to construct appropriate scaffolding when necessary, and remove the scaffolding when unnecessary. In particular, when designing discovering or exploratory learning, appropriateness of constructing and removing scaffoldings is essential. The researchers (Bao, Wang, & Gu, 2005; Huang & Bao, 2006) explored teaching of Pythagoras’ theorem by using scaffolding notions (see Figure 11).

![Figure 11. Constructing and removing scaffoldings](image)

In the left figure, when a, b, c given various integer values (Pythagoras’ number triples), then various data sets of a^2, b^2, $2ab$ and c^2 could be collected; based on this data, many conjectures about the quantitative relationships among a^2, b^2, $2ab$, and c^2 could be made (including Pythagoras theorem, and other conditional equations). After making conjectures, the role of the scaffolding (left grid in Figure 11) is complete, and thus, scaffolding must be removed. The right figure in Figure 11, the sides are labeled as letters a, b, and c, and calculating the area of the square extending on the hypotenuse is the key. The core connection is: Formula of completing square of sum used to calculate the area of a combination figure. From the anchoring knowledge point (area of triangle and square), students can use the scaffolding in the right figure to prove the theorem. This is a creative strategy that has evolved over decades.
TEACHING THROUGH VARIATION IN MATHEMATICS

This strategy has derived from one of the traditional features of learning: learning and teaching progressively. Teachers usually identify several hierarchical-progressive levels of subject topics, and then employ procedural variation problems (Pudian) supporting students to transcend their existing knowledge (anchoring knowledge point) to higher levels of knowledge. In Figure 11, the right figure is a simple and effective scaffolding (i.e., procedural variation) to support students to find proofs. These scaffoldings are interconnected progressively, which is a major strategy in Chinese classrooms. The scaffoldings or Pudian are instructional artifacts, which are designed for prompting student learning. Appropriate design and use of scaffoldings requires teachers to be creative designers, supporters, and guiders of student learning. An effective design of scaffoldings in China usually focuses on the progression of mathematical knowledge development and the “core connection” of different levels of mathematical knowledge.

Variation, Learning Trajectory, and Student Learning

Traditionally, teaching through variation mainly focuses on subject knowledge structure and teaching strategies from a teachers’ perspective. Recently, some researchers explored how teaching through variation could help focus attention on student learning (Huang, Miller, & Tzur, 2015; Huang, Gong, & Han, 2016). Huang and colleagues (Huang et al., 2015) proposed a hybrid-model for analyzing students’ learning opportunities in the classroom. This model includes three hierarchical layers of principles for guiding mathematical instruction in Chinese mathematical classrooms. Teaching through variation (with bridging) is located at a meso-level. A macro-level is Hypothetical Learning Trajectory (HLT) and micro-level is known as reflection on activity-effect relationship (Ref*AER). At macro-level, HLT (Simon, 1995; Simon & Tzur, 2004) focuses on three key aspects: (a) goals teachers set for student learning in terms of conceptions (activity-effect relationships) they are expected to construct, (b) sequences of mental activities (and reflections on them) hypothesized to promote students’ transformation of their extant conceptions into the intended ones, and (c) tasks designed and implemented to fit with and promote hypothetical reorganization processes from available to intended mathematics. At a meso-level, based on teaching through variation, six components are proposed as being important for effective mathematics instruction. They are (1) tailoring old-to-new; (2) specifying intended mathematics; (3) articulating mental activity sequences; (4) designing variation tasks; (5) engaging students in tasks; and (6) examining students’ progress through variation practice. At a micro-level, teachers could monitor students’ learning through systemic reflections on activity-effect relationships that include: (1) continually and automatically comparing the effects of the activity with the learner’s goal and (2) comparing a variety of situations in which the recorded activity-effect dyads are called upon, which can bring about abstraction of the activity-effect relationship as a reasoned, invariant anticipation. Based on a fine-grained analysis of 10 consecutive lessons taught by a competent
teacher in middle school in Shanghai (Clarke et al., 2006) using this framework, the authors concluded that: “our analysis of learning opportunities indicates the power of teaching through variation to deepen and consolidate conceptual understanding and procedural fluency concurrently” (Huang et al., 2015, p. 104).

Moreover, Huang, Gong and Han (2016) explored how teaching through variation and incorporating the notion of learning trajectory could be used as a principle for designing and reflecting upon teaching to promote students’ understanding of division of fractions. In their study, a lesson study approach (Huang & Han, 2015) was adopted: a group of teacher educators (practice-based teaching research specialist and University-based mathematics educators) and mathematics teachers worked together to develop lessons on division of fractions based on variation pedagogy and learning trajectory through three cycles of lesson planning, delivering/observing lessons, and post-lesson debriefings. Based on a literature review, a hypothetical learning trajectory on division of fractions was proposed as a foundation for the design of the lessons. Data consisted of lesson plans, videotaped lessons, post-lesson quizzes, post-lesson discussions, and teachers’ reflection reports. This study revealed that by building on the learning trajectory and by strategically using variation tasks, the lesson was improved in terms of students’ understanding, proficiency, and mathematical reasoning.

Combined, these studies indicate that teaching through variation and incorporating learning trajectory (reflection on activity-effect relationship of student learning) could provide students with opportunities to develop conceptual understanding and procedural fluency concurrently.

INTERPRETATION, IMPLICATIONS AND SUGGESTIONS

In previous sections, we discussed major concepts and principles of teaching through variation that included two types of variations, potential distance, core connection, and Pudian (scaffolding). All of these ideas envision a core conception of learning through exploring a series of hierarchical-progressive tasks. This section interprets teaching through variation from other theoretical perspectives and discusses implications for classroom instruction.

Theoretical Interpretations

Gu et al. (2004) explored theoretical interpretations of teaching through variation from multiple theoretical perspectives. First, from the perspective of meaningful learning (Ausubel, 1978) that emphasizes establishing the non-arbitrary and substantive relationship between learners’ prior knowledge and the new knowledge, they argued that conceptual variation could help students understand the essence of a concept and develop substantial relationships. Meanwhile, procedural variation could help students develop well-structured knowledge and non-arbitrary connections between different types of knowledge. Second, the notion of duality
of mathematics learning (Sfard, 1991) proposes that mathematical concepts can be conceived in two fundamentally different ways: structurally (as objects), and operationally (as processes). Gu et al. (2004) claimed that by creating these two types of variation, it would enhance students’ understanding of two aspects of a mathematical object: operational process and structural object (these two aspects of a mathematical object are complementary). Third, Gu et al. (2004) also discussed the similarities and differences between scaffolding (Wood et al., 1976) and Pudian (i.e., a strategy of procedural variation). Although both scaffolding and Pudian emphasize the support for students to achieve higher learning goals within zone of proximal development (Vygotsky, 1978), Pudian devotes more attention to core connection and hierarchical progression. Fourth, Gu and colleagues also discussed the relationships among Dienes’ theory (Dienes, 1973), Marton’s variation pedagogy (Marton & Tsui, 2004; Marton, 2015), and teaching through variation (Gu et al., 2004). Dienes emphasizes “mathematical variability” and “perceptual variability”, while Marton stresses the patterns of what varies and what is invariant. Both of them mainly focus on conceptual variation. Thus, Gu et al.’s (2004) theory of teaching through variation developed the concept of variation pedagogy by illustrating procedural variation that focuses on developing problem solving ability and building a well-structured knowledge base. In the following section, an additional dimension of teaching through variation, namely, dimensions of variation, will be discussed.

Dimensions of variation. Mathematical instruction has often been criticized in the past. For example, in the 1940s, famous mathematicians Courant and Robbins (1941) critiqued mathematics instruction that focused on simple procedural practice, which may develop students’ formal operation ability but has nothing to do with profound understanding of mathematics. In fact, precise understanding of mathematical concepts is the foundation of mastering mathematics, and effective problem solving is at the heart of all mathematics. Teaching through variation in China focuses on two fundamental aspects: understanding of concepts from multiple perspectives through conceptual variations and developing problem-solving ability and well-structured knowledge base through purposefully selected procedural variation.

The mechanisms and principles of teaching through variation (hierarchical-progressive learning) include: (1) a measurable, plausibly potential distance between existing knowledge (anchoring knowledge point) and the new knowledge or new problems; adjusting the potential distance based on instructional goals and student learning readiness is critical; (2) both conceptual variation and procedural variation should reflect the core connection between existing knowledge and new knowledge to be learned, and design variation problems should surround the core connection. By using appropriate procedural variation problems surrounding the core connection, the potential distance could be shortened and learners’ thinking ability could be advanced.

Based on the research on classroom instruction reforms and practices over the past three decades, researchers have identified the following three critical aspects
of “core connection”: (1) Situation and application. This aspect is concerned with background and meaning of discovery and development of mathematics. It should be pointed out that background and application should not be treated as simply additional information. Rather they should be carefully considered from the perspectives of mathematical necessity and promoting learners’ understanding. For example, the segment diagram in Figure 8 presenting the relationships between a truck and a bridge seem simple, but it reflects the essential quantitative relationship that could be used to present the positional relationship between the truck and the bridge and could be further transferred to present the positional relationship between two circles. (2) Computation and reasoning. These are two basic and fundamental mathematical thinking methods that form a system of mathematical thinking. Mathematical thinking methods reflect the simplicity and convenience of logical connections within variant contexts or situations. For example, in Figure 5, the variation practices regarding isosceles triangles provide an example demonstrating core connection in a logical system from a problem-solving perspective. (3) Cognition of learners. Most importantly, student learning should be the focus of all decisions. When designing applications or contexts, it is critical to consider if they could motivate student learning and are conducive to developing students’ cognition and thinking. In Figure 11, the scaffolding (left figure) is designed for discovering Pythagoras’ theorem by creating several sets of Pythagoras triples; the other scaffolding (right figure) is designed for discovering proofs of Pythagoras’ theorem by calculating areas by completing square of sum. These are typical examples on how scaffoldings (Pudian) could be designed based on core connection between existing knowledge and new knowledge.

In summary, situation and application, computation and reasoning, and cognition level are three relatively independent dimensions, which form a comprehensive space of variation. Of course, when designing a particular lesson, we may focus on one or several dimensions and design greatly meticulous variation in those selected dimensions. Although constructing variation problems should be open, it should focus on essential goals: contexts of knowledge and development of new knowledge; transformation between complex and simple problems; and eliminating rote learning and mastering general and powerful methods.

Implications for Reform of Classroom Instruction

The tradition of teaching through variation has evolved for a long time in China. For further development, attention should be focused on the following two issues.

Variation surrounding core connection. Variation does imply neither “the more, the better”, nor “the more difficult, the better.” There is an old saying, “ten thousand variation problems remains the same principle (万变不离其宗)”. The principle is promoting students’ learning of mathematics. Teaching through variation effectively requires addressing students’ learning differences. In order to implement
differentiated instruction, multiple formative assessments could help teachers understand student learning, and adopt appropriate strategies of teaching through variation. These formative assessments include student-learning worksheets and post-lesson homework sheets, which are developed, based on instruction objectives of units or lessons and used for diagnosing and removing learning obstacles, discussing major problems in class, and designing and making use of post-lesson homework.

In addition, when designing procedural variation, it is crucial to identify and make use of core connection about different content. Take one released item on 2012 PISA test, for example (Figure 12).

![Figure 12. Walking problem on 2012 PISA test](image)

The picture shows the footprints of a man walking. The pace length \(p \) is the distance between the rear of two consecutive footprints.

For men, the formula \(p/n = 140 \), gives an approximate relationship between \(n \) and \(p \) where, \(n \) = number of steps per minute, and \(p \) = pace length in meters.

Question 1: If the formula applies to Heiko’s walking and Heiko takes 70 steps per minute, what is Heiko’s pace length? Show your work.

Question 2: Bernard knows his pace length is 0.80-meters. The formula above applies to Bernard’s walking. Calculate Bernard’s walking speed in meters per minute and in kilometers per hour. Show your work.

Question 1 is used to test whether participants understand the formula, which acts as scaffolding for solving question 2. Question 2 is used to examine flexibility in using the formula and application of the relationship among distance, time, and velocity in daily situations. Each question demonstrates clear core connection between anchoring knowledge point and a new problem.

Core connection in algebra is abounding. For example, regarding operations with polynomials: the basic concept and skills include factors and like terms. Yet, like terms could be combined or split for different purposes. The purpose of using variation problem practice is not mainly for deriving a specific multiplication formula, or splitting, adding or factorizing formula. Rather it serves for understanding the core thinking methods: applications of operational principles of polynomials through transformation. For instance, first, transformation between multiplication and factorization, namely, \((x - 1)(x - 12) = x^2 - 13x + 12\): from left to right means
multiplications (combination of like terms); inversely, it is factorization (including splitting like terms). Second, when discussing quadratic equations through the comparison of two equations: \(x^2 + px + q = 0\) and \((x - a) (x - b) = 0\), where \(a\) and \(b\) are roots of the equation, then, the relationships between roots could be presented as follows: \(a + b = -p\), \(ab = q\) (Vieta’s Theorem): \(x^2 + px + q = 0\) can be transformed as \(\left(x + \frac{p}{2}\right)^2 = A\) (where \(A = \frac{p^2 - 4q}{4}\)), thus, the quadratic formula can be derived.

Third, when studying the quadratic function \(y = x^2 + px + q\), the function can be transformed as: \(y = \left(x + \frac{p}{2}\right)^2 - A\), thus, when \(x = -\frac{p}{2}\), \(y = \) maximum value of the function; Moreover, the monotone and symmetry properties of functions can be analyzed easily. In this way, the operations of multiplication, factorization, and completing the square can lead to the discussion of relationships between roots and coefficients of quadratic equations, monotonous properties, and symmetric features, maximum or minimum value of quadratic functions. This is a typical example in school mathematics of how new concepts can be derived through making use of core connection.

Variation promoting self-exploratory exploration. One possible derivation of using variation in teaching is direct telling. Superficially, using variation knowledge eventually leads to telling rigid and cumbersome formulas. The ultimate goal of improving mathematics instruction is to develop students’ self-exploratory learning ability and their ability to learn how to learn by themselves without teaching in the future. Thus, it is necessary to establish a new classroom ecology of harmony in relationships between teachers and students. For example, teaching Pythagoras’ theorem for illustrating an ideal classroom ecology. Rigorous proofs of Pythagoras’ theorem are difficult for students to understand; “measurement and calculation”, or “cutting and pasting” methods are visual and interesting, but the teacher normally provides the results. The following is an example of self-exploratory learning of Pythagoras’s theorem (Bao et al., 2005).

As shown in Figure 11, students are asked to make conjectures based on calculating the area of squares in several situations (Figure 13).

![Figure 13. Make conjectures through calculating area of squares](image-url)
In class, by using calculations on several diagrams (1)–(4) in grids, students created a set of data (see Figure 14).

<table>
<thead>
<tr>
<th>Area</th>
<th>Diagram (1)</th>
<th>Diagram (2)</th>
<th>Diagram (3)</th>
<th>Diagram (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^2)</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>(b^2)</td>
<td>4</td>
<td>9</td>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>(2ab)</td>
<td>4</td>
<td>12</td>
<td>24</td>
<td>40</td>
</tr>
<tr>
<td>(c^2)</td>
<td>5</td>
<td>13</td>
<td>25</td>
<td>41</td>
</tr>
</tbody>
</table>

Figure 14. Data collected based on selected diagrams

Based on these data, students are encouraged to make conjectures (correct and unexpected conjectures). The following is an excerpt focusing on proving and refuting:

1. S1: Based on the data in the table [Figure 14], I find that \(c^2 = 2ab + 1\).
2. T: [Surprise! Unbelievable] how can you make this conjecture? Is it possible?
3. S2: I investigated when \(a = 2, b = 4, 2ab = 16, c^2 = 20, c^2 \neq 2ab + 1\).
4. T: Student 2 used a counterexample to refute your conjecture. It disproves \(c^2 = 2ab + 1\).
5. S3: Mr. I found that when the difference between \(a\) and \(b\) is 1, the result is tenable.
6. T: [Thinking in brain: \(c^2 = (a - b)^2 + 2ab\), when \(b - a = 1, c^2 = 2ab + 1\)] This suggestion is correct. This is a conditional equation. Good, let us examine the other equation that many of you suggested: \(a^2 + b^2 = c^2\).
7. S4: This equation is tenable regarding the given four figures and numbers. But, I think that even if I examine 100 examples and the result is true, I cannot be sure that the equation is true when examining the next situation. So, we have to prove that this is true for all situations.
8. T: Whether \(a^2 + b^2 = c^2\) is a theorem? Examining more cases cannot prove it. What do we need to do?
9. Ss: We have to prove.

The previous discourse illustrated that students were actively involving mathematical reasoning activities such as making conjectures ((1)), disproving and refuting ((3)–(5)), and developing proofs ((7)–(9)). The teacher was a facilitator to guide and solicit students’ explorations.

Variation and learning trajectory. As discussed throughout this chapter, the core idea of teaching through variation can help students develop profound understanding of mathematical concepts and flexibility in problem solving through forming a well-structured knowledge system using hierarchical-progressive variation problems which surround the core connection between different types of knowledge. Paying attention to student cognitive readiness and development is also
one key dimension of core connection. Yet, there are no concrete suggestions about how teachers can pay attention to student thinking and solicit student thinking. To this end, the exploratory studies by Huang et al. (2016) revealed an alternative. That is, to incorporate notions of learning trajectory with teaching through variation. Huang et al. (2016) found that through the combination of two theoretical perspectives, teachers were able to shift their focus on student thinking and solutions during lessons and post-lesson reflections, which eventually resulted in students’ development of deep understandings. They further argued that the notion of teaching through variation emphasizes specific strategies in using systematic tasks progressively (content-focused), but it has not paid explicit attention to the route of children’s learning. Thus, the incorporation of these two perspectives may provide a useful tool for designing and delivering lessons: Teaching through variation could help teachers strategically design and implement tasks in line with students’ learning trajectory.

CONCLUSIONS

This chapter discussed the cultural and historical origin of teaching through variation. The traditional culture value and ancient mathematical learning ideas have afforded mathematical teaching and learning through variation, and the exam-oriented education system has further strengthened this practice. Based on experiences and empirical studies, the core concepts and major mechanisms of teaching through variation have been developed. Two types of variation include conceptual variation and procedural variation. The former focuses on building the essential connections between existing knowledge and new knowledge, developing profound understanding of a concept from multiple perspectives. The latter intends to develop students’ problem-solving ability and develop an interconnected knowledge structure. By considering potential distance and Pudian, which are associated with core connection between existing knowledge (anchoring knowledge point) and the new knowledge or new problems, teachers are expected to design and implement hierarchical-progressive variation problems to achieve mathematical instructional goals. Appropriate implementation of teaching through variation is likely to develop students’ conceptual understanding and procedural fluency concurrently. However, theoretically, more empirical studies on defining and measuring potential distance, and defining and identifying core connection among different types of knowledge are needed. In addition, how to develop teaching through variation by incorporating relevant theoretical perspectives such as learning trajectory (Simon, 1995) and mathematical teaching practices (NCTM, 2014) is a new endeavor worthy of exploring. Practically, implementing teaching through variation effectively requires teachers to possess a profound understanding of content knowledge and rich instructional expertise. It calls for pertinent teacher professional development programs.
NOTE

Teaching through variation is exchangeable with teaching with variation, or Bianshi teaching, 变式教学, in this chapter.

REFERENCES

Feishi Gu
East China Normal University
Shanghai, China

Rongjin Huang
Middle Tennessee State University
Murfreesboro, USA

Lingyuan Gu
Shanghai Educational Science Academy
Shanghai, China